*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001890

-----------------------------------------------------------------------------
Collection: Posets

-----------------------------------------------------------------------------
Description: The maximum magnitude of the Möbius function of a poset.

The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.

-----------------------------------------------------------------------------
References: [1]   [[wikipedia:Incidence_algebra#Special_elements]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

([],2)                                    => 1
([(0,1)],2)                               => 1
([],3)                                    => 1
([(1,2)],3)                               => 1
([(0,1),(0,2)],3)                         => 1
([(0,2),(2,1)],3)                         => 1
([(0,2),(1,2)],3)                         => 1
([],4)                                    => 1
([(2,3)],4)                               => 1
([(1,2),(1,3)],4)                         => 1
([(0,1),(0,2),(0,3)],4)                   => 1
([(0,2),(0,3),(3,1)],4)                   => 1
([(0,1),(0,2),(1,3),(2,3)],4)             => 1
([(1,2),(2,3)],4)                         => 1
([(0,3),(3,1),(3,2)],4)                   => 1
([(1,3),(2,3)],4)                         => 1
([(0,3),(1,3),(3,2)],4)                   => 1
([(0,3),(1,3),(2,3)],4)                   => 1
([(0,3),(1,2)],4)                         => 1
([(0,3),(1,2),(1,3)],4)                   => 1
([(0,2),(0,3),(1,2),(1,3)],4)             => 1
([(0,3),(2,1),(3,2)],4)                   => 1
([(0,3),(1,2),(2,3)],4)                   => 1
([],5)                                    => 1
([(3,4)],5)                               => 1
([(2,3),(2,4)],5)                         => 1
([(1,2),(1,3),(1,4)],5)                   => 1
([(0,1),(0,2),(0,3),(0,4)],5)             => 1
([(0,2),(0,3),(0,4),(4,1)],5)             => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)       => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 2
([(1,3),(1,4),(4,2)],5)                   => 1
([(0,3),(0,4),(4,1),(4,2)],5)             => 1
([(1,2),(1,3),(2,4),(3,4)],5)             => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)       => 1
([(0,3),(0,4),(3,2),(4,1)],5)             => 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)       => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 1
([(2,3),(3,4)],5)                         => 1
([(1,4),(4,2),(4,3)],5)                   => 1
([(0,4),(4,1),(4,2),(4,3)],5)             => 1
([(2,4),(3,4)],5)                         => 1
([(1,4),(2,4),(4,3)],5)                   => 1
([(0,4),(1,4),(4,2),(4,3)],5)             => 1
([(1,4),(2,4),(3,4)],5)                   => 1
([(0,4),(1,4),(2,4),(4,3)],5)             => 1
([(0,4),(1,4),(2,4),(3,4)],5)             => 1
([(0,4),(1,4),(2,3)],5)                   => 1
([(0,4),(1,3),(2,3),(2,4)],5)             => 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)       => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 1
([(0,4),(1,4),(2,3),(4,2)],5)             => 1
([(0,4),(1,3),(2,3),(3,4)],5)             => 1
([(0,4),(1,4),(2,3),(2,4)],5)             => 1
([(0,4),(1,4),(2,3),(3,4)],5)             => 1
([(1,4),(2,3)],5)                         => 1
([(1,4),(2,3),(2,4)],5)                   => 1
([(0,4),(1,2),(1,4),(2,3)],5)             => 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)       => 1
([(1,3),(1,4),(2,3),(2,4)],5)             => 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)       => 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 1
([(0,4),(1,2),(1,4),(4,3)],5)             => 1
([(0,4),(1,2),(1,3)],5)                   => 1
([(0,4),(1,2),(1,3),(1,4)],5)             => 1
([(0,2),(0,4),(3,1),(4,3)],5)             => 1
([(0,4),(1,2),(1,3),(3,4)],5)             => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)       => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)       => 1
([(0,3),(0,4),(1,2),(1,4)],5)             => 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)       => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)       => 1
([(0,3),(1,2),(1,4),(3,4)],5)             => 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)       => 1
([(1,4),(3,2),(4,3)],5)                   => 1
([(0,3),(3,4),(4,1),(4,2)],5)             => 1
([(1,4),(2,3),(3,4)],5)                   => 1
([(0,4),(1,2),(2,4),(4,3)],5)             => 1
([(0,3),(1,4),(4,2)],5)                   => 1
([(0,4),(3,2),(4,1),(4,3)],5)             => 1
([(0,4),(1,2),(2,3),(2,4)],5)             => 1
([(0,4),(2,3),(3,1),(4,2)],5)             => 1
([(0,3),(1,2),(2,4),(3,4)],5)             => 1
([(0,4),(1,2),(2,3),(3,4)],5)             => 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)       => 1

-----------------------------------------------------------------------------
Created: Mar 13, 2023 at 22:17 by Harry Richman

-----------------------------------------------------------------------------
Last Updated: Mar 13, 2023 at 22:17 by Harry Richman