Processing math: 100%

Identifier
Values
[1,2,2] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,2,1] => [[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,2,2] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,3] => [[4,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,3,2] => [[4,3,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,3,1] => [[4,4,2],[3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2,1] => [[4,4,3],[3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,3] => [[5,3],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,2,3] => [[4,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,3,2] => [[4,3,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,3] => [[4,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,4] => [[5,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,3,1,2] => [[4,3,3,1],[2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,4,2] => [[5,4,1],[3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,3,1] => [[4,4,2,2],[3,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,3,1,1] => [[4,4,4,2],[3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,4,1] => [[5,5,2],[4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,3] => [[5,3,3],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2,1,1] => [[4,4,4,3],[3,3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,4] => [[6,3],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[4,2,1] => [[5,5,4],[4,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[4,3] => [[6,4],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,3,2] => [[4,3,1,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,4,1,2] => [[5,4,4,1],[3,3]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,4,1,1] => [[5,5,5,2],[4,4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,1,3] => [[5,3,3,3],[2,2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[4,1,2,1] => [[5,5,4,4],[4,3,3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[4,1,3] => [[6,4,4],[3,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[4,2,1,1] => [[5,5,5,4],[4,4,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
dominating sublattice
Description
Return the sublattice of the dominance order induced by the support of the expansion of the skew Schur function into Schur functions.
Consider the expansion of the skew Schur function sλ/μ=νcλμ,νsν as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions ν with cλμ,ν>0 form a lattice.
The example λ=(52,42,1) and μ=(3,2) shows that this lattice is not a sublattice of the dominance order.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that a1a2 and b1b2 implies a1b1a2b2 and a1b1a2b2.
The set of congruences ordered by refinement forms a lattice.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,,an), this is the ribbon shape whose ith row from the bottom has ai cells.