Identifier
Values
[1,0,1,0] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,0] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,0] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,1,1,0,0,0] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,0,1,0,0] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,0,1,0] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,1,1,0,0,1,0,0] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,2,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [1,3,4,2,6,7,5,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0] => [1,3,5,2,6,7,4,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,4,2,3,7,5,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0] => [1,4,2,6,3,7,5,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0] => [1,4,2,7,3,5,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0,1,0] => [1,5,2,3,7,4,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,5,2,6,3,7,4,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0] => [1,5,2,7,3,4,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
The modular quotient of a lattice.
Description
The modular quotient of a lattice.
This is the largest quotient of a lattice which is modular.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.