Identifier
Values
[1,0,1,0] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,0] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,1,0,0,0] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,0,1,0] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,0] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,1,1,0,0,0,0] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,1,0,0,1,0] => [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,0,1,0] => [5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,1,0,0,1,0] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,1,0,0,0,1,0] => [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,0,1,1,0,0,1,0] => [6,4,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,1,1,0,0,0,1,0] => [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [6,5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,1,0,0,1,0] => [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [6,5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,1,0,1,0,0,1,0] => [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [6,5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [6,4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,1,1,0,0,0,0,1,0] => [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [8,6,5,7,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules with projective dimension at most 1.
Map
The modular quotient of a lattice.
Description
The modular quotient of a lattice.
This is the largest quotient of a lattice which is modular.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].