Values
=>
Cc0029;cc-rep-0
Cc0029;cc-rep
([(0,2),(2,1)],3)=>([(0,2),(2,1)],3)=>3
([(0,1),(0,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,3),(2,3)],4)=>3
([(0,3),(2,1),(3,2)],4)=>([(0,3),(2,1),(3,2)],4)=>4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>4
([(0,4),(2,3),(3,1),(4,2)],5)=>([(0,4),(2,3),(3,1),(4,2)],5)=>5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>4
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>5
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>5
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>5
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>5
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>5
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>5
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>5
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>5
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>5
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>6
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>6
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>6
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>6
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>6
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>5
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>6
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>6
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>6
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>5
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>6
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>6
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>5
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>6
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>6
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>6
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>5
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>5
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>5
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>5
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>6
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>6
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>4
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>6
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>5
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>5
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>6
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>6
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>5
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>5
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>5
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>5
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>6
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>5
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>6
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>5
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>6
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>6
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>5
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>5
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>6
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>6
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>5
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>6
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>6
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>6
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>5
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>6
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>6
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules with projective dimension at most 1.
Map
dual
Description
Return the dual lattice.
The dual (or opposite) of a lattice $(\mathcal P,\leq)$ is the lattice $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
The dual (or opposite) of a lattice $(\mathcal P,\leq)$ is the lattice $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!