edit this statistic or download as text // json
Identifier
Values
[(1,2)] => 0
[(1,2),(3,4)] => 0
[(1,3),(2,4)] => 0
[(1,4),(2,3)] => 0
[(1,2),(3,4),(5,6)] => 0
[(1,3),(2,4),(5,6)] => 0
[(1,4),(2,3),(5,6)] => 0
[(1,5),(2,3),(4,6)] => 2
[(1,6),(2,3),(4,5)] => 4
[(1,6),(2,4),(3,5)] => 3
[(1,5),(2,4),(3,6)] => 1
[(1,4),(2,5),(3,6)] => 1
[(1,3),(2,5),(4,6)] => 0
[(1,2),(3,5),(4,6)] => 0
[(1,2),(3,6),(4,5)] => 0
[(1,3),(2,6),(4,5)] => 0
[(1,4),(2,6),(3,5)] => 1
[(1,5),(2,6),(3,4)] => 2
[(1,6),(2,5),(3,4)] => 2
[(1,2),(3,4),(5,6),(7,8)] => 0
[(1,3),(2,4),(5,6),(7,8)] => 0
[(1,4),(2,3),(5,6),(7,8)] => 0
[(1,5),(2,3),(4,6),(7,8)] => 2
[(1,6),(2,3),(4,5),(7,8)] => 4
[(1,7),(2,3),(4,5),(6,8)] => 8
[(1,8),(2,3),(4,5),(6,7)] => 12
[(1,8),(2,4),(3,5),(6,7)] => 11
[(1,7),(2,4),(3,5),(6,8)] => 7
[(1,6),(2,4),(3,5),(7,8)] => 3
[(1,5),(2,4),(3,6),(7,8)] => 1
[(1,4),(2,5),(3,6),(7,8)] => 1
[(1,3),(2,5),(4,6),(7,8)] => 0
[(1,2),(3,5),(4,6),(7,8)] => 0
[(1,2),(3,6),(4,5),(7,8)] => 0
[(1,3),(2,6),(4,5),(7,8)] => 0
[(1,4),(2,6),(3,5),(7,8)] => 1
[(1,5),(2,6),(3,4),(7,8)] => 2
[(1,6),(2,5),(3,4),(7,8)] => 2
[(1,7),(2,5),(3,4),(6,8)] => 6
[(1,8),(2,5),(3,4),(6,7)] => 10
[(1,8),(2,6),(3,4),(5,7)] => 11
[(1,7),(2,6),(3,4),(5,8)] => 7
[(1,6),(2,7),(3,4),(5,8)] => 7
[(1,5),(2,7),(3,4),(6,8)] => 4
[(1,4),(2,7),(3,5),(6,8)] => 3
[(1,3),(2,7),(4,5),(6,8)] => 2
[(1,2),(3,7),(4,5),(6,8)] => 2
[(1,2),(3,8),(4,5),(6,7)] => 4
[(1,3),(2,8),(4,5),(6,7)] => 4
[(1,4),(2,8),(3,5),(6,7)] => 5
[(1,5),(2,8),(3,4),(6,7)] => 6
[(1,6),(2,8),(3,4),(5,7)] => 9
[(1,7),(2,8),(3,4),(5,6)] => 12
[(1,8),(2,7),(3,4),(5,6)] => 12
[(1,8),(2,7),(3,5),(4,6)] => 10
[(1,7),(2,8),(3,5),(4,6)] => 10
[(1,6),(2,8),(3,5),(4,7)] => 7
[(1,5),(2,8),(3,6),(4,7)] => 6
[(1,4),(2,8),(3,6),(5,7)] => 4
[(1,3),(2,8),(4,6),(5,7)] => 3
[(1,2),(3,8),(4,6),(5,7)] => 3
[(1,2),(3,7),(4,6),(5,8)] => 1
[(1,3),(2,7),(4,6),(5,8)] => 1
[(1,4),(2,7),(3,6),(5,8)] => 2
[(1,5),(2,7),(3,6),(4,8)] => 4
[(1,6),(2,7),(3,5),(4,8)] => 5
[(1,7),(2,6),(3,5),(4,8)] => 5
[(1,8),(2,6),(3,5),(4,7)] => 9
[(1,8),(2,5),(3,6),(4,7)] => 10
[(1,7),(2,5),(3,6),(4,8)] => 6
[(1,6),(2,5),(3,7),(4,8)] => 4
[(1,5),(2,6),(3,7),(4,8)] => 4
[(1,4),(2,6),(3,7),(5,8)] => 2
[(1,3),(2,6),(4,7),(5,8)] => 1
[(1,2),(3,6),(4,7),(5,8)] => 1
[(1,2),(3,5),(4,7),(6,8)] => 0
[(1,3),(2,5),(4,7),(6,8)] => 0
[(1,4),(2,5),(3,7),(6,8)] => 1
[(1,5),(2,4),(3,7),(6,8)] => 1
[(1,6),(2,4),(3,7),(5,8)] => 4
[(1,7),(2,4),(3,6),(5,8)] => 6
[(1,8),(2,4),(3,6),(5,7)] => 10
[(1,8),(2,3),(4,6),(5,7)] => 11
[(1,7),(2,3),(4,6),(5,8)] => 7
[(1,6),(2,3),(4,7),(5,8)] => 5
[(1,5),(2,3),(4,7),(6,8)] => 2
[(1,4),(2,3),(5,7),(6,8)] => 0
[(1,3),(2,4),(5,7),(6,8)] => 0
[(1,2),(3,4),(5,7),(6,8)] => 0
[(1,2),(3,4),(5,8),(6,7)] => 0
[(1,3),(2,4),(5,8),(6,7)] => 0
[(1,4),(2,3),(5,8),(6,7)] => 0
[(1,5),(2,3),(4,8),(6,7)] => 2
[(1,6),(2,3),(4,8),(5,7)] => 5
[(1,7),(2,3),(4,8),(5,6)] => 8
[(1,8),(2,3),(4,7),(5,6)] => 10
[(1,8),(2,4),(3,7),(5,6)] => 9
[(1,7),(2,4),(3,8),(5,6)] => 7
[(1,6),(2,4),(3,8),(5,7)] => 4
[(1,5),(2,4),(3,8),(6,7)] => 1
[(1,4),(2,5),(3,8),(6,7)] => 1
>>> Load all 1069 entries. <<<
[(1,3),(2,5),(4,8),(6,7)] => 0
[(1,2),(3,5),(4,8),(6,7)] => 0
[(1,2),(3,6),(4,8),(5,7)] => 1
[(1,3),(2,6),(4,8),(5,7)] => 1
[(1,4),(2,6),(3,8),(5,7)] => 2
[(1,5),(2,6),(3,8),(4,7)] => 4
[(1,6),(2,5),(3,8),(4,7)] => 4
[(1,7),(2,5),(3,8),(4,6)] => 7
[(1,8),(2,5),(3,7),(4,6)] => 9
[(1,8),(2,6),(3,7),(4,5)] => 9
[(1,7),(2,6),(3,8),(4,5)] => 7
[(1,6),(2,7),(3,8),(4,5)] => 7
[(1,5),(2,7),(3,8),(4,6)] => 5
[(1,4),(2,7),(3,8),(5,6)] => 3
[(1,3),(2,7),(4,8),(5,6)] => 2
[(1,2),(3,7),(4,8),(5,6)] => 2
[(1,2),(3,8),(4,7),(5,6)] => 2
[(1,3),(2,8),(4,7),(5,6)] => 2
[(1,4),(2,8),(3,7),(5,6)] => 3
[(1,5),(2,8),(3,7),(4,6)] => 5
[(1,6),(2,8),(3,7),(4,5)] => 7
[(1,7),(2,8),(3,6),(4,5)] => 8
[(1,8),(2,7),(3,6),(4,5)] => 8
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 0
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 0
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 0
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 4
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 8
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 12
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 18
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 24
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 23
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 17
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 11
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 7
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 3
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 1
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 1
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 0
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 0
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 0
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 0
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 1
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 2
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 6
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 10
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 16
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 22
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 23
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 17
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 11
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 7
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 7
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 4
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 3
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 4
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 4
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 5
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 6
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 9
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 12
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 12
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 18
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 24
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 27
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 21
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 21
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 16
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 13
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 10
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 9
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 8
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 8
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 12
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 12
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 13
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 14
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 17
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 20
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 25
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 30
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 30
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 28
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 28
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 23
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 18
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 15
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 14
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 12
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 11
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 11
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 7
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 7
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 8
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 10
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 11
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 14
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 19
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 19
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 25
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 22
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 16
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 10
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 10
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 7
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 6
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 4
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 3
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 3
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 1
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 1
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 4
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 5
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 5
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 9
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 15
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 21
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 22
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 16
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 10
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 6
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 4
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 4
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 1
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 1
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 0
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 0
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 1
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 1
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 4
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 6
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 10
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 16
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 22
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 23
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 17
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 11
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 7
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 5
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 0
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 0
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 0
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 0
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 0
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 0
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 5
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 8
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 10
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 16
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 22
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 21
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 15
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 9
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 7
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 4
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 1
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 1
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 0
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 0
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 1
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 1
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 4
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 4
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 7
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 9
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 15
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 21
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 21
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 15
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 9
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 7
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 7
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 5
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 2
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 2
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 3
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 5
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 7
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 8
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 8
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 14
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 20
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 23
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 17
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 17
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 12
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 11
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 9
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 7
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 6
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 6
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 10
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 10
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 11
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 13
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 15
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 16
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 21
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 26
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 26
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 26
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 26
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 21
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 20
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 16
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 14
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 12
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 11
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 11
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 7
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 7
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 8
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 10
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 12
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 16
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 17
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 17
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 23
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 24
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 18
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 16
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 16
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 12
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 10
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 8
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 7
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 7
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 4
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 4
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 5
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 7
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 9
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 9
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 14
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 16
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 22
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 22
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 16
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 14
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 9
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 6
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 6
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 4
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 3
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 3
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 3
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 3
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 6
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 9
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 14
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 16
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 22
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 23
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 17
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 15
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 10
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 7
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 4
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 4
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 4
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 4
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 6
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 9
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 12
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 17
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 22
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 24
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 23
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 21
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 16
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 11
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 8
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 5
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 5
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 4
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 4
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 5
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 5
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 6
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 8
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 8
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 11
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 16
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 21
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 23
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 23
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 21
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 16
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 11
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 11
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 9
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 7
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 6
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 6
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 9
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 9
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 10
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 12
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 14
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 18
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 18
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 23
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 25
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 27
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 25
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 25
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 21
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 17
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 15
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 13
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 12
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 12
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 12
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 12
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 13
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 15
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 17
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 21
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 25
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 26
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 26
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 23
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 23
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 22
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 18
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 16
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 13
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 11
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 10
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 10
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 10
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 10
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 11
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 13
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 16
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 18
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 22
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 22
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 24
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 22
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 20
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 15
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 15
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 13
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 10
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 8
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 7
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 7
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 6
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 6
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 7
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 9
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 12
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 12
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 15
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 20
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 22
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 21
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 19
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 14
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 11
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 7
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 7
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 5
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 4
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 4
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 3
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 3
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 4
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 4
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 7
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 11
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 14
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 19
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 21
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 22
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 20
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 15
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 12
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 8
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 5
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 3
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 1
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 1
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 1
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 3
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 6
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 10
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 13
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 15
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 21
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 20
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 14
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 12
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 9
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 5
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 1
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 1
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 3
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 5
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 5
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 9
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 12
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 14
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 20
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 21
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 15
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 13
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 10
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 10
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 7
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 5
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 4
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 4
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 5
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 5
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 6
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 8
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 11
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 13
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 13
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 15
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 21
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 20
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 14
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 14
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 13
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 11
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 8
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 6
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 5
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 5
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 9
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 9
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 10
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 12
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 15
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 17
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 18
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 23
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 23
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 25
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 25
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 20
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 17
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 16
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 13
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 11
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 10
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 10
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 6
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 6
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 7
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 9
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 12
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 13
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 16
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 16
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 22
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 21
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 15
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 11
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 11
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 10
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 7
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 5
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 4
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 4
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 4
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 4
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 5
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 7
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 10
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 10
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 12
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 16
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 22
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 21
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 15
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 11
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 9
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 5
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 5
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 3
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 2
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 1
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 1
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 2
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 2
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 5
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 9
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 11
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 15
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 21
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 22
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 16
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 12
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 10
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 6
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 3
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 1
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 1
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 0
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 0
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 0
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 5
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 7
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 12
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 16
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 22
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 21
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 15
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 11
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 6
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 4
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 1
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 0
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 0
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 1
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 2
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 4
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 4
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 6
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 11
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 15
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 21
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 20
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 14
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 10
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 5
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 5
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 4
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 2
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 1
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 1
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 4
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 4
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 5
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 7
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 8
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 12
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 12
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 16
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 22
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 23
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 17
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 17
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 14
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 10
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 9
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 7
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 6
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 6
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 10
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 10
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 11
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 13
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 14
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 18
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 21
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 26
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 26
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 28
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 28
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 23
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 20
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 16
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 13
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 12
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 11
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 11
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 7
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 7
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 8
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 9
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 12
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 16
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 19
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 19
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 25
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 24
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 18
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 14
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 14
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 10
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 7
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 6
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 5
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 5
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 3
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 4
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 7
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 7
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 12
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 16
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 22
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 21
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 15
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 11
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 6
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 2
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 1
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 0
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 0
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 0
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 0
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 1
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 1
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 3
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 7
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 12
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 16
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 22
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 23
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 17
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 13
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 8
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 4
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 0
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 0
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 0
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 0
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 0
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 0
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 4
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 8
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 13
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 18
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 22
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 21
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 17
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 12
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 7
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 3
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 1
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 1
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 0
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 0
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 0
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 0
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 1
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 2
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 6
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 11
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 16
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 20
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 21
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 17
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 12
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 7
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 7
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 4
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 3
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 5
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 5
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 6
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 7
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 10
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 14
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 14
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 19
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 23
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 25
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 21
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 21
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 17
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 13
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 10
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 9
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 8
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 8
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 10
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 10
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 11
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 12
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 15
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 19
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 23
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 26
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 26
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 24
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 24
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 21
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 17
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 13
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 12
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 10
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 9
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 9
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 7
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 7
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 8
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 10
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 11
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 15
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 19
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 19
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 23
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 21
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 17
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 12
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 12
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 8
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 7
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 5
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 4
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 4
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 1
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 1
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 4
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 5
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 5
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 10
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 15
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 19
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 20
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 16
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 11
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 6
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 4
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 4
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 2
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 1
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 1
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 0
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 0
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 1
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 1
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 4
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 6
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 11
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 16
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 20
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 21
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 17
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 12
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 7
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 5
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 0
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 0
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 0
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 1
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 1
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 1
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 3
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 6
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 10
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 12
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 17
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 21
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 20
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 16
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 11
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 9
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 5
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 2
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 2
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 1
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 1
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 2
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 3
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 5
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 5
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 9
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 11
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 16
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 20
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 21
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 17
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 12
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 10
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 10
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 7
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 5
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 4
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 4
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 4
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 4
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 5
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 7
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 10
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 11
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 11
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 16
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 20
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 22
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 18
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 18
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 14
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 13
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 10
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 8
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 7
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 7
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 9
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 9
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 10
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 12
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 15
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 16
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 20
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 23
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 23
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 22
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 22
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 19
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 18
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 15
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 12
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 10
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 9
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 9
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 7
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 7
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 8
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 10
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 13
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 16
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 17
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 17
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 21
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 22
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 18
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 16
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 16
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 13
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 10
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 8
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 7
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 7
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 5
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 5
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 6
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 8
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 11
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 11
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 15
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 17
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 21
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 20
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 16
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 14
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 10
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 6
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 6
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 4
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 3
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 3
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 6
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 10
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 14
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 16
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 20
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 21
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 17
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 15
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 11
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 7
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 4
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 2
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 2
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 2
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 4
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 7
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 11
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 15
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 18
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 20
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 19
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 17
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 14
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 10
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 6
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 3
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 2
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 3
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 3
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 4
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 6
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 6
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 10
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 14
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 17
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 19
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 20
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 18
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 15
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 11
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 11
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 8
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 6
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 5
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 5
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 7
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 7
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 8
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 10
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 13
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 16
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 16
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 19
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 21
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 21
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 19
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 19
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 17
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 14
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 11
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 9
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 8
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 8
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 8
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 8
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 9
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 11
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 14
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 17
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 19
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 20
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 20
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of occurrences of a 231 pattern in the restricted growth word of a perfect matching.
Code
def to_standard(s):
    a = {e: i for i, e in enumerate(sorted(set(s)))}
    return [a[e] for e in s]
    
def pattern_occurrences(w, pat):
    pat = to_standard(pat)
    return sum(1 for s in Subwords(w, len(pat))
               if pat == to_standard(s))

def statistic(m):
    return pattern_occurrences(m.to_restricted_growth_word(), [2,3,1])

Created
Sep 30, 2022 at 16:25 by Martin Rubey
Updated
Sep 30, 2022 at 16:25 by Martin Rubey