Identifier
Values
[1] => [1,0,1,0] => [[1,3],[2,4]] => [[1,2,4],[3]] => 1
[2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => [[1,2,3,4,6],[5]] => 3
[1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => [[1,2,4,5,6],[3]] => 1
[2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => [[1,2,4,6],[3,5]] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Eigenvalues of the top-to-random operator acting on a simple module.
These eigenvalues are given in [1] and [3].
The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module.
This statistic bears different names, such as the type in [2] or eig in [3].
Similarly, the eigenvalues of the random-to-random operator acting on a simple module is St000508Eigenvalues of the random-to-random operator acting on a simple module..
Map
catabolism
Description
Remove the first row of the standard tableau and insert it back using column Schensted insertion, starting with the largest number.
The algorithm for column-inserting an entry $k$ into tableau $T$ is as follows:
If $k$ is larger than all entries in the first column, place $k$ at the bottom of the first column and the procedure is finished. Otherwise, place $k$ in the first column, replacing the smallest entry, $y$, greater than $k$. Now insert $y$ into the second column using the same procedure: if $y$ is greater than all entries in the second column, place it at the bottom of that column (provided that the result is still a tableau). Otherwise, place $y$ in the second column, replacing, or 'bumping', the smallest entry, $z$, larger than $y$. Continue the procedure until we have placed a bumped entry at the bottom of a column (or on its own in a new column).
Map
to two-row standard tableau
Description
Return a standard tableau of shape $(n,n)$ where $n$ is the semilength of the Dyck path.
Given a Dyck path $D$, its image is given by recording the positions of the up-steps in the first row and the positions of the down-steps in the second row.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.