*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001816

-----------------------------------------------------------------------------
Collection: Standard tableaux

-----------------------------------------------------------------------------
Description: Eigenvalues of the top-to-random operator acting on a simple module.

These eigenvalues are given in [1] and [3].

The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module.

This statistic bears different names, such as the type in [2] or eig in [3].

Similarly, the eigenvalues of the random-to-random operator acting on a simple module is [[St000508]].

-----------------------------------------------------------------------------
References: [1]   Garsia, A. M., Wallach, N. $r$-Qsym is free over Sym [[MathSciNet:2319171]]
[2]   Lafrenière, N. Eigenvalues of symmetrized shuffling operators [[MathSciNet:4098299]]
[3]   Reiner, V., Saliola, F., Welker, V. Spectra of symmetrized shuffling operators [[MathSciNet:3184410]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[]                            => 0
[[1]]                         => 1
[[1,2]]                       => 2
[[1],[2]]                     => 0
[[1,2,3]]                     => 3
[[1,3],[2]]                   => 0
[[1,2],[3]]                   => 1
[[1],[2],[3]]                 => 1
[[1,2,3,4]]                   => 4
[[1,3,4],[2]]                 => 0
[[1,2,4],[3]]                 => 1
[[1,2,3],[4]]                 => 2
[[1,3],[2,4]]                 => 0
[[1,2],[3,4]]                 => 1
[[1,4],[2],[3]]               => 1
[[1,3],[2],[4]]               => 0
[[1,2],[3],[4]]               => 2
[[1],[2],[3],[4]]             => 0
[[1,2,3,4,5]]                 => 5
[[1,3,4,5],[2]]               => 0
[[1,2,4,5],[3]]               => 1
[[1,2,3,5],[4]]               => 2
[[1,2,3,4],[5]]               => 3
[[1,3,5],[2,4]]               => 0
[[1,2,5],[3,4]]               => 1
[[1,3,4],[2,5]]               => 0
[[1,2,4],[3,5]]               => 1
[[1,2,3],[4,5]]               => 2
[[1,4,5],[2],[3]]             => 1
[[1,3,5],[2],[4]]             => 0
[[1,2,5],[3],[4]]             => 2
[[1,3,4],[2],[5]]             => 0
[[1,2,4],[3],[5]]             => 1
[[1,2,3],[4],[5]]             => 3
[[1,4],[2,5],[3]]             => 1
[[1,3],[2,5],[4]]             => 0
[[1,2],[3,5],[4]]             => 2
[[1,3],[2,4],[5]]             => 0
[[1,2],[3,4],[5]]             => 1
[[1,5],[2],[3],[4]]           => 0
[[1,4],[2],[3],[5]]           => 1
[[1,3],[2],[4],[5]]           => 0
[[1,2],[3],[4],[5]]           => 1
[[1],[2],[3],[4],[5]]         => 1
[[1,2,3,4,5,6]]               => 6
[[1,3,4,5,6],[2]]             => 0
[[1,2,4,5,6],[3]]             => 1
[[1,2,3,5,6],[4]]             => 2
[[1,2,3,4,6],[5]]             => 3
[[1,2,3,4,5],[6]]             => 4
[[1,3,5,6],[2,4]]             => 0
[[1,2,5,6],[3,4]]             => 1
[[1,3,4,6],[2,5]]             => 0
[[1,2,4,6],[3,5]]             => 1
[[1,2,3,6],[4,5]]             => 2
[[1,3,4,5],[2,6]]             => 0
[[1,2,4,5],[3,6]]             => 1
[[1,2,3,5],[4,6]]             => 2
[[1,2,3,4],[5,6]]             => 3
[[1,4,5,6],[2],[3]]           => 1
[[1,3,5,6],[2],[4]]           => 0
[[1,2,5,6],[3],[4]]           => 2
[[1,3,4,6],[2],[5]]           => 0
[[1,2,4,6],[3],[5]]           => 1
[[1,2,3,6],[4],[5]]           => 3
[[1,3,4,5],[2],[6]]           => 0
[[1,2,4,5],[3],[6]]           => 1
[[1,2,3,5],[4],[6]]           => 2
[[1,2,3,4],[5],[6]]           => 4
[[1,3,5],[2,4,6]]             => 0
[[1,2,5],[3,4,6]]             => 1
[[1,3,4],[2,5,6]]             => 0
[[1,2,4],[3,5,6]]             => 1
[[1,2,3],[4,5,6]]             => 2
[[1,4,6],[2,5],[3]]           => 1
[[1,3,6],[2,5],[4]]           => 0
[[1,2,6],[3,5],[4]]           => 2
[[1,3,6],[2,4],[5]]           => 0
[[1,2,6],[3,4],[5]]           => 1
[[1,4,5],[2,6],[3]]           => 1
[[1,3,5],[2,6],[4]]           => 0
[[1,2,5],[3,6],[4]]           => 2
[[1,3,4],[2,6],[5]]           => 0
[[1,2,4],[3,6],[5]]           => 1
[[1,2,3],[4,6],[5]]           => 3
[[1,3,5],[2,4],[6]]           => 0
[[1,2,5],[3,4],[6]]           => 1
[[1,3,4],[2,5],[6]]           => 0
[[1,2,4],[3,5],[6]]           => 1
[[1,2,3],[4,5],[6]]           => 2
[[1,5,6],[2],[3],[4]]         => 0
[[1,4,6],[2],[3],[5]]         => 1
[[1,3,6],[2],[4],[5]]         => 0
[[1,2,6],[3],[4],[5]]         => 1
[[1,4,5],[2],[3],[6]]         => 1
[[1,3,5],[2],[4],[6]]         => 0
[[1,2,5],[3],[4],[6]]         => 2
[[1,3,4],[2],[5],[6]]         => 0
[[1,2,4],[3],[5],[6]]         => 1
[[1,2,3],[4],[5],[6]]         => 2
[[1,4],[2,5],[3,6]]           => 1
[[1,3],[2,5],[4,6]]           => 0
[[1,2],[3,5],[4,6]]           => 2
[[1,3],[2,4],[5,6]]           => 0
[[1,2],[3,4],[5,6]]           => 1
[[1,5],[2,6],[3],[4]]         => 0
[[1,4],[2,6],[3],[5]]         => 1
[[1,3],[2,6],[4],[5]]         => 0
[[1,2],[3,6],[4],[5]]         => 1
[[1,4],[2,5],[3],[6]]         => 1
[[1,3],[2,5],[4],[6]]         => 0
[[1,2],[3,5],[4],[6]]         => 2
[[1,3],[2,4],[5],[6]]         => 0
[[1,2],[3,4],[5],[6]]         => 1
[[1,6],[2],[3],[4],[5]]       => 1
[[1,5],[2],[3],[4],[6]]       => 0
[[1,4],[2],[3],[5],[6]]       => 1
[[1,3],[2],[4],[5],[6]]       => 0
[[1,2],[3],[4],[5],[6]]       => 2
[[1],[2],[3],[4],[5],[6]]     => 0
[[1,2,3,4,5,6,7]]             => 7
[[1,3,4,5,6,7],[2]]           => 0
[[1,2,4,5,6,7],[3]]           => 1
[[1,2,3,5,6,7],[4]]           => 2
[[1,2,3,4,6,7],[5]]           => 3
[[1,2,3,4,5,7],[6]]           => 4
[[1,2,3,4,5,6],[7]]           => 5
[[1,3,5,6,7],[2,4]]           => 0
[[1,2,5,6,7],[3,4]]           => 1
[[1,3,4,6,7],[2,5]]           => 0
[[1,2,4,6,7],[3,5]]           => 1
[[1,2,3,6,7],[4,5]]           => 2
[[1,3,4,5,7],[2,6]]           => 0
[[1,2,4,5,7],[3,6]]           => 1
[[1,2,3,5,7],[4,6]]           => 2
[[1,2,3,4,7],[5,6]]           => 3
[[1,3,4,5,6],[2,7]]           => 0
[[1,2,4,5,6],[3,7]]           => 1
[[1,2,3,5,6],[4,7]]           => 2
[[1,2,3,4,6],[5,7]]           => 3
[[1,2,3,4,5],[6,7]]           => 4
[[1,4,5,6,7],[2],[3]]         => 1
[[1,3,5,6,7],[2],[4]]         => 0
[[1,2,5,6,7],[3],[4]]         => 2
[[1,3,4,6,7],[2],[5]]         => 0
[[1,2,4,6,7],[3],[5]]         => 1
[[1,2,3,6,7],[4],[5]]         => 3
[[1,3,4,5,7],[2],[6]]         => 0
[[1,2,4,5,7],[3],[6]]         => 1
[[1,2,3,5,7],[4],[6]]         => 2
[[1,2,3,4,7],[5],[6]]         => 4
[[1,3,4,5,6],[2],[7]]         => 0
[[1,2,4,5,6],[3],[7]]         => 1
[[1,2,3,5,6],[4],[7]]         => 2
[[1,2,3,4,6],[5],[7]]         => 3
[[1,2,3,4,5],[6],[7]]         => 5
[[1,3,5,7],[2,4,6]]           => 0
[[1,2,5,7],[3,4,6]]           => 1
[[1,3,4,7],[2,5,6]]           => 0
[[1,2,4,7],[3,5,6]]           => 1
[[1,2,3,7],[4,5,6]]           => 2
[[1,3,5,6],[2,4,7]]           => 0
[[1,2,5,6],[3,4,7]]           => 1
[[1,3,4,6],[2,5,7]]           => 0
[[1,2,4,6],[3,5,7]]           => 1
[[1,2,3,6],[4,5,7]]           => 2
[[1,3,4,5],[2,6,7]]           => 0
[[1,2,4,5],[3,6,7]]           => 1
[[1,2,3,5],[4,6,7]]           => 2
[[1,2,3,4],[5,6,7]]           => 3
[[1,4,6,7],[2,5],[3]]         => 1
[[1,3,6,7],[2,5],[4]]         => 0
[[1,2,6,7],[3,5],[4]]         => 2
[[1,3,6,7],[2,4],[5]]         => 0
[[1,2,6,7],[3,4],[5]]         => 1
[[1,4,5,7],[2,6],[3]]         => 1
[[1,3,5,7],[2,6],[4]]         => 0
[[1,2,5,7],[3,6],[4]]         => 2
[[1,3,4,7],[2,6],[5]]         => 0
[[1,2,4,7],[3,6],[5]]         => 1
[[1,2,3,7],[4,6],[5]]         => 3
[[1,3,5,7],[2,4],[6]]         => 0
[[1,2,5,7],[3,4],[6]]         => 1
[[1,3,4,7],[2,5],[6]]         => 0
[[1,2,4,7],[3,5],[6]]         => 1
[[1,2,3,7],[4,5],[6]]         => 2
[[1,4,5,6],[2,7],[3]]         => 1
[[1,3,5,6],[2,7],[4]]         => 0
[[1,2,5,6],[3,7],[4]]         => 2
[[1,3,4,6],[2,7],[5]]         => 0
[[1,2,4,6],[3,7],[5]]         => 1
[[1,2,3,6],[4,7],[5]]         => 3
[[1,3,4,5],[2,7],[6]]         => 0
[[1,2,4,5],[3,7],[6]]         => 1
[[1,2,3,5],[4,7],[6]]         => 2
[[1,2,3,4],[5,7],[6]]         => 4
[[1,3,5,6],[2,4],[7]]         => 0
[[1,2,5,6],[3,4],[7]]         => 1
[[1,3,4,6],[2,5],[7]]         => 0
[[1,2,4,6],[3,5],[7]]         => 1
[[1,2,3,6],[4,5],[7]]         => 2
[[1,3,4,5],[2,6],[7]]         => 0
[[1,2,4,5],[3,6],[7]]         => 1
[[1,2,3,5],[4,6],[7]]         => 2
[[1,2,3,4],[5,6],[7]]         => 3
[[1,5,6,7],[2],[3],[4]]       => 0
[[1,4,6,7],[2],[3],[5]]       => 1
[[1,3,6,7],[2],[4],[5]]       => 0
[[1,2,6,7],[3],[4],[5]]       => 1
[[1,4,5,7],[2],[3],[6]]       => 1
[[1,3,5,7],[2],[4],[6]]       => 0
[[1,2,5,7],[3],[4],[6]]       => 2
[[1,3,4,7],[2],[5],[6]]       => 0
[[1,2,4,7],[3],[5],[6]]       => 1
[[1,2,3,7],[4],[5],[6]]       => 2
[[1,4,5,6],[2],[3],[7]]       => 1
[[1,3,5,6],[2],[4],[7]]       => 0
[[1,2,5,6],[3],[4],[7]]       => 2
[[1,3,4,6],[2],[5],[7]]       => 0
[[1,2,4,6],[3],[5],[7]]       => 1
[[1,2,3,6],[4],[5],[7]]       => 3
[[1,3,4,5],[2],[6],[7]]       => 0
[[1,2,4,5],[3],[6],[7]]       => 1
[[1,2,3,5],[4],[6],[7]]       => 2
[[1,2,3,4],[5],[6],[7]]       => 3
[[1,4,6],[2,5,7],[3]]         => 1
[[1,3,6],[2,5,7],[4]]         => 0
[[1,2,6],[3,5,7],[4]]         => 2
[[1,3,6],[2,4,7],[5]]         => 0
[[1,2,6],[3,4,7],[5]]         => 1
[[1,4,5],[2,6,7],[3]]         => 1
[[1,3,5],[2,6,7],[4]]         => 0
[[1,2,5],[3,6,7],[4]]         => 2
[[1,3,4],[2,6,7],[5]]         => 0
[[1,2,4],[3,6,7],[5]]         => 1
[[1,2,3],[4,6,7],[5]]         => 3
[[1,3,5],[2,4,7],[6]]         => 0
[[1,2,5],[3,4,7],[6]]         => 1
[[1,3,4],[2,5,7],[6]]         => 0
[[1,2,4],[3,5,7],[6]]         => 1
[[1,2,3],[4,5,7],[6]]         => 2
[[1,3,5],[2,4,6],[7]]         => 0
[[1,2,5],[3,4,6],[7]]         => 1
[[1,3,4],[2,5,6],[7]]         => 0
[[1,2,4],[3,5,6],[7]]         => 1
[[1,2,3],[4,5,6],[7]]         => 2
[[1,4,7],[2,5],[3,6]]         => 1
[[1,3,7],[2,5],[4,6]]         => 0
[[1,2,7],[3,5],[4,6]]         => 2
[[1,3,7],[2,4],[5,6]]         => 0
[[1,2,7],[3,4],[5,6]]         => 1
[[1,4,6],[2,5],[3,7]]         => 1
[[1,3,6],[2,5],[4,7]]         => 0
[[1,2,6],[3,5],[4,7]]         => 2
[[1,3,6],[2,4],[5,7]]         => 0
[[1,2,6],[3,4],[5,7]]         => 1
[[1,4,5],[2,6],[3,7]]         => 1
[[1,3,5],[2,6],[4,7]]         => 0
[[1,2,5],[3,6],[4,7]]         => 2
[[1,3,4],[2,6],[5,7]]         => 0
[[1,2,4],[3,6],[5,7]]         => 1
[[1,2,3],[4,6],[5,7]]         => 3
[[1,3,5],[2,4],[6,7]]         => 0
[[1,2,5],[3,4],[6,7]]         => 1
[[1,3,4],[2,5],[6,7]]         => 0
[[1,2,4],[3,5],[6,7]]         => 1
[[1,2,3],[4,5],[6,7]]         => 2
[[1,5,7],[2,6],[3],[4]]       => 0
[[1,4,7],[2,6],[3],[5]]       => 1
[[1,3,7],[2,6],[4],[5]]       => 0
[[1,2,7],[3,6],[4],[5]]       => 1
[[1,4,7],[2,5],[3],[6]]       => 1
[[1,3,7],[2,5],[4],[6]]       => 0
[[1,2,7],[3,5],[4],[6]]       => 2
[[1,3,7],[2,4],[5],[6]]       => 0
[[1,2,7],[3,4],[5],[6]]       => 1
[[1,5,6],[2,7],[3],[4]]       => 0
[[1,4,6],[2,7],[3],[5]]       => 1
[[1,3,6],[2,7],[4],[5]]       => 0
[[1,2,6],[3,7],[4],[5]]       => 1
[[1,4,5],[2,7],[3],[6]]       => 1
[[1,3,5],[2,7],[4],[6]]       => 0
[[1,2,5],[3,7],[4],[6]]       => 2
[[1,3,4],[2,7],[5],[6]]       => 0
[[1,2,4],[3,7],[5],[6]]       => 1
[[1,2,3],[4,7],[5],[6]]       => 2
[[1,4,6],[2,5],[3],[7]]       => 1
[[1,3,6],[2,5],[4],[7]]       => 0
[[1,2,6],[3,5],[4],[7]]       => 2
[[1,3,6],[2,4],[5],[7]]       => 0
[[1,2,6],[3,4],[5],[7]]       => 1
[[1,4,5],[2,6],[3],[7]]       => 1
[[1,3,5],[2,6],[4],[7]]       => 0
[[1,2,5],[3,6],[4],[7]]       => 2
[[1,3,4],[2,6],[5],[7]]       => 0
[[1,2,4],[3,6],[5],[7]]       => 1
[[1,2,3],[4,6],[5],[7]]       => 3
[[1,3,5],[2,4],[6],[7]]       => 0
[[1,2,5],[3,4],[6],[7]]       => 1
[[1,3,4],[2,5],[6],[7]]       => 0
[[1,2,4],[3,5],[6],[7]]       => 1
[[1,2,3],[4,5],[6],[7]]       => 2
[[1,6,7],[2],[3],[4],[5]]     => 1
[[1,5,7],[2],[3],[4],[6]]     => 0
[[1,4,7],[2],[3],[5],[6]]     => 1
[[1,3,7],[2],[4],[5],[6]]     => 0
[[1,2,7],[3],[4],[5],[6]]     => 2
[[1,5,6],[2],[3],[4],[7]]     => 0
[[1,4,6],[2],[3],[5],[7]]     => 1
[[1,3,6],[2],[4],[5],[7]]     => 0
[[1,2,6],[3],[4],[5],[7]]     => 1
[[1,4,5],[2],[3],[6],[7]]     => 1
[[1,3,5],[2],[4],[6],[7]]     => 0
[[1,2,5],[3],[4],[6],[7]]     => 2
[[1,3,4],[2],[5],[6],[7]]     => 0
[[1,2,4],[3],[5],[6],[7]]     => 1
[[1,2,3],[4],[5],[6],[7]]     => 3
[[1,5],[2,6],[3,7],[4]]       => 0
[[1,4],[2,6],[3,7],[5]]       => 1
[[1,3],[2,6],[4,7],[5]]       => 0
[[1,2],[3,6],[4,7],[5]]       => 1
[[1,4],[2,5],[3,7],[6]]       => 1
[[1,3],[2,5],[4,7],[6]]       => 0
[[1,2],[3,5],[4,7],[6]]       => 2
[[1,3],[2,4],[5,7],[6]]       => 0
[[1,2],[3,4],[5,7],[6]]       => 1
[[1,4],[2,5],[3,6],[7]]       => 1
[[1,3],[2,5],[4,6],[7]]       => 0
[[1,2],[3,5],[4,6],[7]]       => 2
[[1,3],[2,4],[5,6],[7]]       => 0
[[1,2],[3,4],[5,6],[7]]       => 1
[[1,6],[2,7],[3],[4],[5]]     => 1
[[1,5],[2,7],[3],[4],[6]]     => 0
[[1,4],[2,7],[3],[5],[6]]     => 1
[[1,3],[2,7],[4],[5],[6]]     => 0
[[1,2],[3,7],[4],[5],[6]]     => 2
[[1,5],[2,6],[3],[4],[7]]     => 0
[[1,4],[2,6],[3],[5],[7]]     => 1
[[1,3],[2,6],[4],[5],[7]]     => 0
[[1,2],[3,6],[4],[5],[7]]     => 1
[[1,4],[2,5],[3],[6],[7]]     => 1
[[1,3],[2,5],[4],[6],[7]]     => 0
[[1,2],[3,5],[4],[6],[7]]     => 2
[[1,3],[2,4],[5],[6],[7]]     => 0
[[1,2],[3,4],[5],[6],[7]]     => 1
[[1,7],[2],[3],[4],[5],[6]]   => 0
[[1,6],[2],[3],[4],[5],[7]]   => 1
[[1,5],[2],[3],[4],[6],[7]]   => 0
[[1,4],[2],[3],[5],[6],[7]]   => 1
[[1,3],[2],[4],[5],[6],[7]]   => 0
[[1,2],[3],[4],[5],[6],[7]]   => 1
[[1],[2],[3],[4],[5],[6],[7]] => 1

-----------------------------------------------------------------------------
Created: Jul 13, 2022 at 17:16 by Nadia Lafreniere

-----------------------------------------------------------------------------
Last Updated: Jul 13, 2022 at 17:16 by Nadia Lafreniere