*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001765

-----------------------------------------------------------------------------
Collection: Graphs

-----------------------------------------------------------------------------
Description: The number of connected components of the friends and strangers graph.

Let $X$ and $Y$ be graphs with the same vertex set $\{1,\dots,n\}$.  Then the friends-and-strangers graph has as vertex set the set of permutations $\mathfrak S_n$ and edges $\left(\sigma, (i, j)\circ\sigma\right)$ if $(i, j)$ is an edge of $X$ and $\left(\sigma(i), \sigma(j)\right)$ is an edge of $Y$.

This statistic is the number of connected components of the friends and strangers graphs where $X=Y$.

For example, if $X$ is a complete graph the statistic is $1$, if $X$ has no edges, the statistic is $n!$, and if $X$ is the path graph, the statistic is
$$
\sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k (n-k)!\binom{n-k}{k},
$$
see [thm. 2.2, 3].

-----------------------------------------------------------------------------
References: [1]   Defant, C., Kravitz, N. Friends and Strangers Walking on Graphs [[arXiv:2009.05040]]
[2]   Alon, N., Defant, C., Kravitz, N. Typical and Extremal Aspects of Friends-and-Strangers Graphs [[arXiv:2009.07840]]
[3]   Stanley, R. P. An equivalence relation on the symmetric group and multiplicity-free flag $h$-vectors [[MathSciNet:3029438]]

-----------------------------------------------------------------------------
Code:
def FS(X, Y):
    n = X.num_verts()
    assert n == Y.num_verts()
    X = X.relabel(inplace=False)
    Y = Y.relabel(inplace=False)
    V = list(Permutations(n))
    E = []
    for pi in V:
        for i, j in X.edges(labels=False):
            a, b = pi[i], pi[j]
            if Y.has_edge(a-1, b-1):
                pi1 = list(pi)
                pi1[i], pi1[j] = b, a
                pi1 = Permutation(pi1)
                E.append((pi, pi1))
    return Graph([V, E]).copy(immutable=True)


def statistic(G):
    return FS(G, G).connected_components_number()

-----------------------------------------------------------------------------
Statistic values:

([],1)                                                                                          => 1
([],2)                                                                                          => 2
([(0,1)],2)                                                                                     => 1
([],3)                                                                                          => 6
([(1,2)],3)                                                                                     => 5
([(0,2),(1,2)],3)                                                                               => 2
([(0,1),(0,2),(1,2)],3)                                                                         => 1
([],4)                                                                                          => 24
([(2,3)],4)                                                                                     => 22
([(1,3),(2,3)],4)                                                                               => 16
([(0,3),(1,3),(2,3)],4)                                                                         => 6
([(0,3),(1,2)],4)                                                                               => 18
([(0,3),(1,2),(2,3)],4)                                                                         => 8
([(1,2),(1,3),(2,3)],4)                                                                         => 10
([(0,3),(1,2),(1,3),(2,3)],4)                                                                   => 2
([(0,2),(0,3),(1,2),(1,3)],4)                                                                   => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)                                                             => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)                                                       => 1
([],5)                                                                                          => 120
([(3,4)],5)                                                                                     => 114
([(2,4),(3,4)],5)                                                                               => 96
([(1,4),(2,4),(3,4)],5)                                                                         => 66
([(0,4),(1,4),(2,4),(3,4)],5)                                                                   => 24
([(1,4),(2,3)],5)                                                                               => 98
([(1,4),(2,3),(3,4)],5)                                                                         => 68
([(0,1),(2,4),(3,4)],5)                                                                         => 74
([(2,3),(2,4),(3,4)],5)                                                                         => 74
([(0,4),(1,4),(2,3),(3,4)],5)                                                                   => 32
([(1,4),(2,3),(2,4),(3,4)],5)                                                                   => 42
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)                                                             => 7
([(1,3),(1,4),(2,3),(2,4)],5)                                                                   => 34
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)                                                             => 8
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                             => 21
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)                                                             => 12
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                       => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)                                                       => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                 => 1
([(0,4),(1,3),(2,3),(2,4)],5)                                                                   => 42
([(0,1),(2,3),(2,4),(3,4)],5)                                                                   => 46
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)                                                             => 16
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)                                                       => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)                                                             => 20
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)                                                       => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)                                                 => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)                                                       => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                       => 17
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                           => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)                                                 => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)                                           => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                     => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                               => 1
([],6)                                                                                          => 720
([(4,5)],6)                                                                                     => 696
([(3,5),(4,5)],6)                                                                               => 624
([(2,5),(3,5),(4,5)],6)                                                                         => 504
([(1,5),(2,5),(3,5),(4,5)],6)                                                                   => 336
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)                                                             => 120
([(2,5),(3,4)],6)                                                                               => 628
([(2,5),(3,4),(4,5)],6)                                                                         => 508
([(1,2),(3,5),(4,5)],6)                                                                         => 520
([(3,4),(3,5),(4,5)],6)                                                                         => 528
([(1,5),(2,5),(3,4),(4,5)],6)                                                                   => 352
([(0,1),(2,5),(3,5),(4,5)],6)                                                                   => 372
([(2,5),(3,4),(3,5),(4,5)],6)                                                                   => 388
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)                                                             => 156
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)                                                             => 221
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 33
([(2,4),(2,5),(3,4),(3,5)],6)                                                                   => 356
([(0,5),(1,5),(2,4),(3,4)],6)                                                                   => 400
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)                                                             => 196
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)                                                             => 220
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                             => 270
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                             => 228
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)                                                             => 184
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)                                                       => 36
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 123
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                       => 65
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 7
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                                       => 68
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)                                                       => 72
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 46
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 14
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                           => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 1
([(0,5),(1,4),(2,3)],6)                                                                         => 534
([(1,5),(2,4),(3,4),(3,5)],6)                                                                   => 372
([(0,1),(2,5),(3,4),(4,5)],6)                                                                   => 394
([(1,2),(3,4),(3,5),(4,5)],6)                                                                   => 392
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)                                                             => 214
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)                                                             => 238
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)                                                             => 254
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                                       => 79
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                                       => 133
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                                 => 11
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)                                                             => 220
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)                                                       => 66
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                       => 96
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)                                                       => 106
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                                       => 126
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)                                                       => 90
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                 => 6
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 21
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 53
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                           => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)                                                             => 258
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)                                                             => 242
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)                                                             => 273
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)                                                       => 98
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)                                                       => 139
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 114
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 143
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)                                                       => 101
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)                                                 => 10
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)                                                 => 32
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 32
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 210
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                                 => 12
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 81
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 7
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 16
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)                                           => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                           => 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                     => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                           => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 30
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 9
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                     => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)                                                 => 6
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 34
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                           => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                           => 27
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                     => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)                                                       => 156
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)                                                 => 15
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)                                                 => 24
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                 => 45
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 36
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 19
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                           => 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)                                           => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                     => 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)                                           => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)                                           => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                     => 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 26
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                     => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                     => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)                                     => 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                               => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                         => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                   => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)                                                       => 164
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)                                                 => 50
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)                                                 => 54
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 101
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                           => 5
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 25
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)                                           => 6
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)                                     => 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                               => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)                                           => 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                           => 6
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                     => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                               => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)                                     => 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                               => 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                   => 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                               => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 26
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                   => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)             => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                         => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                         => 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                   => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                   => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)             => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)       => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1

-----------------------------------------------------------------------------
Created: Jan 21, 2022 at 17:44 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Jan 21, 2022 at 17:44 by Martin Rubey