*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001757

-----------------------------------------------------------------------------
Collection: Graphs

-----------------------------------------------------------------------------
Description: The number of orbits of toric promotion on a graph.

Let $(V, E)$ be a graph with $n=|V|$ vertices, and let $\sigma: V \to [n]$ be a labelling of its vertices.  Let 
$
\tau_{i, j}(\sigma) = 
\begin{cases}
\sigma & \text{if $\{\sigma^{-1}(i), \sigma^{-1}(j)\}\in E$}\\
(i, j)\circ\sigma & \text{otherwise}.
\end{cases}
$

The toric promotion operator is the product $\tau_{n,1}\tau_{n-1,n}\dots\tau_{1,2}$.

This statistic records the number of orbits in the orbit decomposition of toric promotion.

-----------------------------------------------------------------------------
References: [1]   Defant, C. Toric Promotion [[arXiv:2112.06843]]

-----------------------------------------------------------------------------
Code:
from sage.combinat.cyclic_sieving_phenomenon import orbit_decomposition
def toggle_labelling(G, pi, i, j):
    if G.has_edge(pi.index(i), pi.index(j)):
        return pi
    sigma = [j if e == i else i if e == j else e for e in pi]
    return Permutation(sigma)

def toric_promotion_labelling(G, pi):
    n = G.num_verts()
    assert set(G.vertices()) == set(range(n))
    for i in range(1, n):
        pi = toggle_labelling(G, pi, i, i+1)
    return toggle_labelling(G, pi, n, 1)

def toric_promotion_labelling_orbits(G):
    G = G.canonical_label().copy(immutable=True)
    return toric_promotion_labelling_orbits_aux(G)

@cached_function
def toric_promotion_labelling_orbits_aux(G):
    n = G.num_verts()
    return orbit_decomposition(Permutations(n),
                               lambda pi: toric_promotion_labelling(G, pi))

def statistic(G):
    return len(toric_promotion_labelling_orbits(G))

-----------------------------------------------------------------------------
Statistic values:

([],1)                                                                                          => 1
([],2)                                                                                          => 2
([(0,1)],2)                                                                                     => 2
([],3)                                                                                          => 3
([(1,2)],3)                                                                                     => 2
([(0,2),(1,2)],3)                                                                               => 3
([(0,1),(0,2),(1,2)],3)                                                                         => 6
([],4)                                                                                          => 8
([(2,3)],4)                                                                                     => 8
([(1,3),(2,3)],4)                                                                               => 4
([(0,3),(1,3),(2,3)],4)                                                                         => 8
([(0,3),(1,2)],4)                                                                               => 8
([(0,3),(1,2),(2,3)],4)                                                                         => 8
([(1,2),(1,3),(2,3)],4)                                                                         => 4
([(0,3),(1,2),(1,3),(2,3)],4)                                                                   => 8
([(0,2),(0,3),(1,2),(1,3)],4)                                                                   => 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)                                                             => 16
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)                                                       => 24
([],5)                                                                                          => 30
([(3,4)],5)                                                                                     => 24
([(2,4),(3,4)],5)                                                                               => 18
([(1,4),(2,4),(3,4)],5)                                                                         => 12
([(0,4),(1,4),(2,4),(3,4)],5)                                                                   => 30
([(1,4),(2,3)],5)                                                                               => 18
([(1,4),(2,3),(3,4)],5)                                                                         => 12
([(0,1),(2,4),(3,4)],5)                                                                         => 12
([(2,3),(2,4),(3,4)],5)                                                                         => 18
([(0,4),(1,4),(2,3),(3,4)],5)                                                                   => 30
([(1,4),(2,3),(2,4),(3,4)],5)                                                                   => 12
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)                                                             => 30
([(1,3),(1,4),(2,3),(2,4)],5)                                                                   => 10
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)                                                             => 20
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                             => 10
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)                                                             => 30
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                       => 20
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)                                                       => 40
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                 => 50
([(0,4),(1,3),(2,3),(2,4)],5)                                                                   => 30
([(0,1),(2,3),(2,4),(3,4)],5)                                                                   => 12
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)                                                             => 30
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)                                                       => 40
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)                                                             => 30
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)                                                       => 40
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)                                                 => 50
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)                                                       => 20
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                       => 12
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                                 => 30
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                           => 60
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)                                                 => 50
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)                                           => 80
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                                     => 90
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)                               => 120
([],6)                                                                                          => 144
([(4,5)],6)                                                                                     => 144
([(3,5),(4,5)],6)                                                                               => 144
([(2,5),(3,5),(4,5)],6)                                                                         => 96
([(1,5),(2,5),(3,5),(4,5)],6)                                                                   => 48
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)                                                             => 144
([(2,5),(3,4)],6)                                                                               => 144
([(2,5),(3,4),(4,5)],6)                                                                         => 96
([(1,2),(3,5),(4,5)],6)                                                                         => 144
([(3,4),(3,5),(4,5)],6)                                                                         => 144
([(1,5),(2,5),(3,4),(4,5)],6)                                                                   => 48
([(0,1),(2,5),(3,5),(4,5)],6)                                                                   => 96
([(2,5),(3,4),(3,5),(4,5)],6)                                                                   => 96
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)                                                             => 144
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)                                                             => 48
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 144
([(2,4),(2,5),(3,4),(3,5)],6)                                                                   => 80
([(0,5),(1,5),(2,4),(3,4)],6)                                                                   => 144
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)                                                             => 48
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)                                                             => 144
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                             => 80
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                             => 48
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)                                                             => 144
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)                                                       => 96
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 48
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                       => 144
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 96
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                                       => 48
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)                                                       => 96
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 96
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 48
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 96
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 96
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                           => 240
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 240
([(0,5),(1,4),(2,3)],6)                                                                         => 144
([(1,5),(2,4),(3,4),(3,5)],6)                                                                   => 48
([(0,1),(2,5),(3,4),(4,5)],6)                                                                   => 96
([(1,2),(3,4),(3,5),(4,5)],6)                                                                   => 144
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)                                                             => 144
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)                                                             => 48
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)                                                             => 96
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                                       => 144
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                                       => 48
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                                 => 144
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)                                                             => 48
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)                                                       => 96
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                       => 40
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)                                                       => 72
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                                       => 48
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)                                                       => 144
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                 => 48
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 96
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 48
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                           => 72
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)                                                             => 144
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)                                                             => 80
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)                                                             => 144
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)                                                       => 96
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)                                                       => 144
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 144
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 80
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)                                                       => 144
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)                                                 => 96
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)                                                 => 96
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 144
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 96
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                       => 96
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                                 => 96
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 48
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 144
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 120
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)                                           => 96
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 96
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                           => 72
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 168
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                     => 144
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                           => 96
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 48
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 144
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 96
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                     => 240
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 240
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)                                                 => 96
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 48
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                           => 96
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                           => 48
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                     => 144
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)                                                       => 96
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)                                                 => 156
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)                                                 => 48
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)                                                 => 96
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 96
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)                                                 => 48
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 144
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                           => 72
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)                                           => 144
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                                     => 168
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)                                           => 216
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)                                           => 96
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                                     => 216
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 216
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 192
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 144
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 48
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 96
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 144
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)                                     => 144
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                     => 192
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 168
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 240
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)                                     => 360
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 360
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                               => 240
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                         => 336
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                   => 360
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)                                                       => 144
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)                                                 => 96
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)                                                 => 144
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                                 => 96
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                                           => 96
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                           => 144
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 144
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)                                           => 144
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)                                     => 144
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 96
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 168
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                                     => 192
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 192
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                               => 288
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 288
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)                                           => 144
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                                           => 144
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                                     => 192
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)                               => 240
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)                                     => 240
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 264
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                               => 192
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 288
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                   => 360
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)                               => 240
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 240
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 240
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 144
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                               => 48
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 144
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                   => 288
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)             => 432
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                         => 312
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)                         => 288
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)                         => 384
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)                   => 384
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)                   => 456
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)             => 504
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)       => 576
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 720

-----------------------------------------------------------------------------
Created: Dec 14, 2021 at 15:56 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Dec 14, 2021 at 15:56 by Martin Rubey