*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001755

-----------------------------------------------------------------------------
Collection: Finite Cartan types

-----------------------------------------------------------------------------
Description: The number of pairwise different full-rank reflection subgroups of the associated Weyl group.
Let $\mathcal{R} \subseteq W$ be the set of reflections in the Weyl group $W$.
A (possibly empty) subset $X \subseteq \mathcal{R}$ generates a subgroup of $W$ that is again a reflection group. This is the number of all pairwise different full-rank subgroups of $W$ obtained this way.
If $\Phi^+$ is an associated set of positive roots, then this also is the number of subsets $Y \subseteq \Phi^+$ such that $Y$ is a simple system of some type and $|Y| = n$, where $n$ is the rank of $W$.
For example the group of type $B_2$ has two different subgroups of type $A_1 \times A_1$ and itself as full-rank reflection subgroups.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

['A',1] => 1
['A',2] => 1
['B',2] => 3
['G',2] => 6
['A',3] => 1
['B',3] => 9
['C',3] => 9
['A',4] => 1
['B',4] => 35
['C',4] => 35
['D',4] => 4
['F',4] => 142
['A',5] => 1
['B',5] => 128
['C',5] => 128
['D',5] => 11
['A',6] => 1
['B',6] => 755
['C',6] => 755
['D',6] => 41
['E',6] => 77
['A',7] => 1
['B',7] => 4105
['C',7] => 4105
['D',7] => 162
['E',7] => 1516
['A',8] => 1
['E',8] => 132462
['C',2] => 3

-----------------------------------------------------------------------------
Created: Dec 13, 2021 at 13:51 by Dennis Jahn

-----------------------------------------------------------------------------
Last Updated: May 04, 2022 at 11:23 by Dennis Jahn