Identifier
- St001751: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>2
['A',2]=>6
['B',2]=>8
['G',2]=>8
['A',3]=>24
['B',3]=>38
['C',3]=>38
['A',4]=>115
['B',4]=>237
['C',4]=>237
['D',4]=>26
['F',4]=>297
['A',5]=>631
['B',5]=>1813
['C',5]=>1813
['D',5]=>229
['A',6]=>3907
['B',6]=>16981
['C',6]=>16981
['D',6]=>4143
['E',6]=>10690
['E',7]=>159368
['E',8]=>4854344
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of proper elements in the Weyl group of a finite Cartan type.
References
[1] Balogh, József, Brewster, D., Hodges, R. Proper elements of Coxeter Groups arXiv:2111.15105
Code
@cached_function
def statistic(ct):
return sum(1 for w in WeylGroup(ct) if is_proper(ct, w))
def is_proper(ct, w):
ct = CartanType(ct)
n = ct.rank()
l = w.length()
d = len(w.descents(side="left"))
if ct.type() == "A":
return l <= n + binomial(d + 1, 2)
if ct.type() in ["B", "C"]:
return l <= n + d^2
if ct.type() == "D":
if d > 3:
return l <= n + d^2 - d
return l <= binomial(d + 1, 2)
if ct.type() == "E":
m = [0, 1, 3, 6, 12, 20, 36, 63, 120]
return l <= n + m[d]
if ct.type() == "F":
m = [0, 1, 4, 9, 24]
return l <= n + m[d]
if ct.type() == "G": # = I_2(6)
if d == 2:
return l <= 6 + n
if d < 2:
return l <= 2 + d
Created
Dec 02, 2021 at 12:26 by Martin Rubey
Updated
Dec 02, 2021 at 12:26 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!