Processing math: 100%

Identifier
Values
([],1) => ([],2) => 0
([],2) => ([],3) => 0
([(0,1)],2) => ([(1,2)],3) => 1
([],3) => ([],4) => 0
([(1,2)],3) => ([(2,3)],4) => 1
([(0,2),(1,2)],3) => ([(1,3),(2,3)],4) => 2
([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 2
([],4) => ([],5) => 0
([(2,3)],4) => ([(3,4)],5) => 1
([(1,3),(2,3)],4) => ([(2,4),(3,4)],5) => 2
([(0,3),(1,3),(2,3)],4) => ([(1,4),(2,4),(3,4)],5) => 3
([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 1
([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([],5) => ([],6) => 0
([(3,4)],5) => ([(4,5)],6) => 1
([(2,4),(3,4)],5) => ([(3,5),(4,5)],6) => 2
([(1,4),(2,4),(3,4)],5) => ([(2,5),(3,5),(4,5)],6) => 3
([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 1
([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 2
([(0,1),(2,4),(3,4)],5) => ([(1,2),(3,5),(4,5)],6) => 2
([(2,3),(2,4),(3,4)],5) => ([(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(1,3),(1,4),(2,3),(2,4)],5) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The difference of the maximal and the minimal degree in a graph.
The graph is regular if and only if this statistic is zero.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.