Processing math: 100%

Identifier
Values
[(1,2)] => [2,1] => ([(0,1)],2) => ([(0,1)],2) => 2
[(1,2),(3,4)] => [2,1,4,3] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 3
[(1,3),(2,4)] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => 2
[(1,4),(2,3)] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2)],4) => 3
[(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,6),(2,4),(3,5)] => [4,5,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 2
[(1,5),(2,4),(3,6)] => [4,5,6,2,1,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1)],2) => 2
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2)],4) => 3
[(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,4),(2,6),(3,5)] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,5),(2,6),(3,4)] => [4,5,6,3,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 2
[(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[(1,6),(2,4),(3,5),(7,8)] => [4,5,6,2,3,1,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,4),(2,5),(3,6),(7,8)] => [4,5,6,1,2,3,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => ([(0,3),(1,2)],4) => 3
[(1,5),(2,6),(3,4),(7,8)] => [4,5,6,3,1,2,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,8),(2,7),(3,5),(4,6)] => [5,6,7,8,3,4,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[(1,7),(2,8),(3,5),(4,6)] => [5,6,7,8,3,4,1,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,2)],3) => 2
[(1,6),(2,8),(3,5),(4,7)] => [5,6,7,8,3,1,4,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,5),(2,8),(3,6),(4,7)] => [5,6,7,8,1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,2),(3,8),(4,6),(5,7)] => [2,1,6,7,8,4,5,3] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,5),(2,7),(3,6),(4,8)] => [5,6,7,8,1,3,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,6),(2,7),(3,5),(4,8)] => [5,6,7,8,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,7),(2,6),(3,5),(4,8)] => [5,6,7,8,3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,8),(2,6),(3,5),(4,7)] => [5,6,7,8,3,2,4,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,8),(2,5),(3,6),(4,7)] => [5,6,7,8,2,3,4,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,2)],3) => 2
[(1,7),(2,5),(3,6),(4,8)] => [5,6,7,8,2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,6),(2,5),(3,7),(4,8)] => [5,6,7,8,2,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,5),(2,6),(3,7),(4,8)] => [5,6,7,8,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1)],2) => 2
[(1,2),(3,6),(4,7),(5,8)] => [2,1,6,7,8,3,4,5] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => ([(0,3),(1,2)],4) => 3
[(1,4),(2,3),(5,7),(6,8)] => [3,4,2,1,7,8,5,6] => ([(0,2),(0,3),(1,2),(1,3),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,3),(2,4),(5,7),(6,8)] => [3,4,1,2,7,8,5,6] => ([(0,6),(0,7),(1,3),(1,4),(2,3),(2,4),(5,6),(5,7)],8) => ([(0,3),(1,2)],4) => 3
[(1,3),(2,4),(5,8),(6,7)] => [3,4,1,2,7,8,6,5] => ([(0,2),(0,3),(1,2),(1,3),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,5),(2,6),(3,8),(4,7)] => [5,6,7,8,1,2,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,6),(2,5),(3,8),(4,7)] => [5,6,7,8,2,1,4,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 3
[(1,7),(2,5),(3,8),(4,6)] => [5,6,7,8,2,4,1,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,8),(2,5),(3,7),(4,6)] => [5,6,7,8,2,4,3,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,8),(2,6),(3,7),(4,5)] => [5,6,7,8,4,2,3,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[(1,7),(2,6),(3,8),(4,5)] => [5,6,7,8,4,2,1,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,6),(2,7),(3,8),(4,5)] => [5,6,7,8,4,1,2,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,2)],3) => 2
[(1,5),(2,7),(3,8),(4,6)] => [5,6,7,8,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[(1,2),(3,7),(4,8),(5,6)] => [2,1,6,7,8,5,3,4] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[(1,5),(2,8),(3,7),(4,6)] => [5,6,7,8,1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,6),(2,8),(3,7),(4,5)] => [5,6,7,8,4,1,3,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[(1,7),(2,8),(3,6),(4,5)] => [5,6,7,8,4,3,1,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[(1,8),(2,7),(3,6),(4,5)] => [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The minimal order of a graph which is not an induced subgraph of the given graph.
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let G=(V,E) be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods {Nv|vV} of G, and has an edge (Na,Nb) between two vertices if and only if (a,b) is an edge of G. This is well-defined, because if Na=Nc and Nb=Nd, then (a,b)E if and only if (c,d)E.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,,n}, this is the graph with vertices {1,,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.