Identifier
Values
[1] => ([],1) => ([],1) => 1
[1,2] => ([],2) => ([],1) => 1
[2,1] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,3] => ([],3) => ([],1) => 1
[1,3,2] => ([(1,2)],3) => ([(0,1)],2) => 1
[2,1,3] => ([(1,2)],3) => ([(0,1)],2) => 1
[2,3,1] => ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,2] => ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[1,2,3,4] => ([],4) => ([],1) => 1
[1,2,4,3] => ([(2,3)],4) => ([(0,1)],2) => 1
[1,3,2,4] => ([(2,3)],4) => ([(0,1)],2) => 1
[1,3,4,2] => ([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,4,2,3] => ([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[2,1,3,4] => ([(2,3)],4) => ([(0,1)],2) => 1
[2,1,4,3] => ([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,1,4] => ([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,1,2,4] => ([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,2,3,4,5] => ([],5) => ([],1) => 1
[1,2,3,5,4] => ([(3,4)],5) => ([(0,1)],2) => 1
[1,2,4,3,5] => ([(3,4)],5) => ([(0,1)],2) => 1
[1,2,4,5,3] => ([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,5,3,4] => ([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[1,3,2,4,5] => ([(3,4)],5) => ([(0,1)],2) => 1
[1,3,2,5,4] => ([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,3,4,2,5] => ([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,4,2,3,5] => ([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,3,4,5] => ([(3,4)],5) => ([(0,1)],2) => 1
[2,1,3,5,4] => ([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,4,3,5] => ([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,3,1,4,5] => ([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,1,2,4,5] => ([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,2,3,4,5,6] => ([],6) => ([],1) => 1
[1,2,3,4,6,5] => ([(4,5)],6) => ([(0,1)],2) => 1
[1,2,3,5,4,6] => ([(4,5)],6) => ([(0,1)],2) => 1
[1,2,3,5,6,4] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,3,6,4,5] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[1,2,4,3,5,6] => ([(4,5)],6) => ([(0,1)],2) => 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,4,5,3,6] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,3,2,4,5,6] => ([(4,5)],6) => ([(0,1)],2) => 1
[1,3,2,4,6,5] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,3,2,5,4,6] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,3,4,2,5,6] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,4,2,3,5,6] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
[1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,3,4,5,6] => ([(4,5)],6) => ([(0,1)],2) => 1
[2,1,3,4,6,5] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,3,5,4,6] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,4,3,5,6] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,1,5,3,4,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,3,1,4,5,6] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,1,2,4,5,6] => ([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,2,4,6,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,1,2,5,4,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 1
[3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
>>> Load all 178 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
Map
connected vertex partitions
Description
Sends a graph to the lattice of its connected vertex partitions.
A connected vertex partition of a graph G=(V,E) is a set partition of V such that each part induced a connected subgraph of G. The connected vertex partitions of G form a lattice under refinement. If G=Kn is a complete graph, the resulting lattice is the lattice of set partitions on n elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
A connected vertex partition of a graph G=(V,E) is a set partition of V such that each part induced a connected subgraph of G. The connected vertex partitions of G form a lattice under refinement. If G=Kn is a complete graph, the resulting lattice is the lattice of set partitions on n elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!