Identifier
Values
([],1) => ([],1) => ([],1) => 1
([],2) => ([],1) => ([],1) => 1
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 1
([],3) => ([],1) => ([],1) => 1
([(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,2),(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([],4) => ([],1) => ([],1) => 1
([(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,3),(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,3),(1,2)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([],5) => ([],1) => ([],1) => 1
([(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,4),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(2,3)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([],6) => ([],1) => ([],1) => 1
([(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,5),(3,4)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
>>> Load all 161 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
connected vertex partitions
Description
Sends a graph to the lattice of its connected vertex partitions.
A connected vertex partition of a graph G=(V,E) is a set partition of V such that each part induced a connected subgraph of G. The connected vertex partitions of G form a lattice under refinement. If G=Kn is a complete graph, the resulting lattice is the lattice of set partitions on n elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
A connected vertex partition of a graph G=(V,E) is a set partition of V such that each part induced a connected subgraph of G. The connected vertex partitions of G form a lattice under refinement. If G=Kn is a complete graph, the resulting lattice is the lattice of set partitions on n elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!