Identifier
Values
[1] => [1] => [1] => ([(0,1)],2) => 1
[1,2] => [2,1] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,3] => [3,2,1] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,3,2] => [3,1,2] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[2,1,3] => [2,3,1] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[2,3,1] => [2,1,3] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[3,2,1] => [1,2,3] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,3,4,2] => [4,2,1,3] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,4,2,3] => [4,1,3,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[2,3,1,4] => [3,2,4,1] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[2,3,4,1] => [3,2,1,4] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[2,4,1,3] => [3,1,4,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[2,4,3,1] => [3,1,2,4] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[3,1,2,4] => [2,4,3,1] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[3,1,4,2] => [2,4,1,3] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[3,2,4,1] => [2,3,1,4] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[3,4,1,2] => [2,1,4,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[3,4,2,1] => [2,1,3,4] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[4,1,2,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[4,1,3,2] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[4,2,1,3] => [1,3,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[4,2,3,1] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[4,3,1,2] => [1,2,4,3] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[2,4,5,3,1] => [4,2,1,3,5] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[2,5,3,1,4] => [4,1,3,5,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[3,4,1,5,2] => [3,2,5,1,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[3,5,2,4,1] => [3,1,4,2,5] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[4,1,3,5,2] => [2,5,3,1,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[4,1,5,2,3] => [2,5,1,4,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[4,2,5,3,1] => [2,4,1,3,5] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[4,5,3,1,2] => [2,1,3,5,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[5,2,3,4,1] => [1,4,3,2,5] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[5,2,4,1,3] => [1,4,2,5,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[5,3,1,2,4] => [1,3,5,4,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[5,3,1,4,2] => [1,3,5,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[2,4,5,1,6,3] => [5,3,2,6,1,4] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[2,4,6,3,5,1] => [5,3,1,4,2,6] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[2,5,1,4,6,3] => [5,2,6,3,1,4] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[2,5,1,6,3,4] => [5,2,6,1,4,3] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[2,6,3,4,5,1] => [5,1,4,3,2,6] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[2,6,3,5,1,4] => [5,1,4,2,6,3] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[3,5,1,6,4,2] => [4,2,6,1,3,5] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[3,6,4,2,5,1] => [4,1,3,5,2,6] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,2,5,1,6,3] => [3,5,2,6,1,4] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,2,6,3,5,1] => [3,5,1,4,2,6] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,5,1,2,6,3] => [3,2,6,5,1,4] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,5,2,6,3,1] => [3,2,5,1,4,6] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,5,3,1,6,2] => [3,2,4,6,1,5] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,6,2,5,3,1] => [3,1,5,2,4,6] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,6,3,1,5,2] => [3,1,4,6,2,5] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[4,6,3,5,1,2] => [3,1,4,2,6,5] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,1,2,4,6,3] => [2,6,5,3,1,4] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,1,2,6,3,4] => [2,6,5,1,4,3] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,1,3,6,4,2] => [2,6,4,1,3,5] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,1,4,2,6,3] => [2,6,3,5,1,4] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,1,6,3,4,2] => [2,6,1,4,3,5] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,1,6,4,2,3] => [2,6,1,3,5,4] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,2,4,6,3,1] => [2,5,3,1,4,6] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,2,6,3,1,4] => [2,5,1,4,6,3] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,3,1,4,6,2] => [2,4,6,3,1,5] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[5,3,1,6,2,4] => [2,4,6,1,5,3] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,2,4,5,3,1] => [1,5,3,2,4,6] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,2,5,3,1,4] => [1,5,2,4,6,3] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,3,1,4,5,2] => [1,4,6,3,2,5] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,3,1,5,2,4] => [1,4,6,2,5,3] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,3,4,2,5,1] => [1,4,3,5,2,6] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,3,4,5,1,2] => [1,4,3,2,6,5] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,3,5,1,2,4] => [1,4,2,6,5,3] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,3,5,1,4,2] => [1,4,2,6,3,5] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,4,2,3,5,1] => [1,3,5,4,2,6] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[6,4,2,5,1,3] => [1,3,5,2,6,4] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
runsort
Description
The permutation obtained by sorting the increasing runs lexicographically.
Map
complement
Description
Sents a permutation to its complement.
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$