Identifier
-
Mp00081:
Standard tableaux
—reading word permutation⟶
Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001719: Lattices ⟶ ℤ
Values
[[1]] => [1] => [1] => ([(0,1)],2) => 1
[[1,2]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[1],[2]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[1,2,3]] => [1,2,3] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[[1,3],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[[1,2],[3]] => [3,1,2] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[[1],[2],[3]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[[1,3,4],[2]] => [2,1,3,4] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[[1,2,4],[3]] => [3,1,2,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[[1,3],[2,4]] => [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[[1,2],[3,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,4],[2],[3]] => [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[1,3],[2],[4]] => [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[1,2],[3],[4]] => [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[[1],[2],[3],[4]] => [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[1,2,5],[3,4]] => [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[[1,2,4],[3,5]] => [3,5,1,2,4] => [3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[1,2,3],[4,5]] => [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[[1,2,3],[4],[5]] => [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[[1,4],[2,5],[3]] => [3,2,5,1,4] => [2,5,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[1,3],[2,5],[4]] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[[1,2],[3,5],[4]] => [4,3,5,1,2] => [4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[1,2],[3],[4],[5]] => [5,4,3,1,2] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[[1,2,3,4],[5,6]] => [5,6,1,2,3,4] => [5,3,1,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,2,4],[3,5,6]] => [3,5,6,1,2,4] => [5,2,6,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => [2,4,1,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[[1,3,5],[2,6],[4]] => [4,2,6,1,3,5] => [2,4,1,6,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[1,3,4],[2,6],[5]] => [5,2,6,1,3,4] => [2,6,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,2,3],[4,6],[5]] => [5,4,6,1,2,3] => [5,2,4,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,2,4],[3],[5],[6]] => [6,5,3,1,2,4] => [3,5,2,6,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[[1,3],[2,5],[4,6]] => [4,6,2,5,1,3] => [5,1,4,6,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[1,2],[3,5],[4,6]] => [4,6,3,5,1,2] => [3,5,1,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => [3,2,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[1,2],[3,6],[4],[5]] => [5,4,3,6,1,2] => [3,5,1,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[1,4],[2],[3],[5],[6]] => [6,5,3,2,1,4] => [3,6,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[[1,2,3,5],[4,6,7]] => [4,6,7,1,2,3,5] => [4,1,7,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,3,4,5],[2,7],[6]] => [6,2,7,1,3,4,5] => [2,6,4,1,7,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,2,3,4],[5,7],[6]] => [6,5,7,1,2,3,4] => [5,2,7,4,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,4,5],[2,6,7],[3]] => [3,2,6,7,1,4,5] => [2,7,5,1,3,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,3,5],[2,6,7],[4]] => [4,2,6,7,1,3,5] => [2,6,3,7,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,3,4],[2,6,7],[5]] => [5,2,6,7,1,3,4] => [2,5,1,6,3,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,2,3],[4,6,7],[5]] => [5,4,6,7,1,2,3] => [5,1,7,3,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,3,4],[2,5,7],[6]] => [6,2,5,7,1,3,4] => [2,6,3,5,1,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,2,5],[3,6],[4,7]] => [4,7,3,6,1,2,5] => [3,7,5,1,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,2,4],[3,6],[5,7]] => [5,7,3,6,1,2,4] => [3,5,1,7,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,2,5],[3,7],[4],[6]] => [6,4,3,7,1,2,5] => [3,7,5,1,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,2,4],[3,7],[5],[6]] => [6,5,3,7,1,2,4] => [3,6,2,5,1,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,3],[2,6],[4,7],[5]] => [5,4,7,2,6,1,3] => [4,2,6,1,5,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[1,4],[2,7],[3],[5],[6]] => [6,5,3,2,7,1,4] => [3,6,1,7,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
Map
inverse first fundamental transformation
Description
Let σ=(i11⋯i1k1)⋯(iℓ1⋯iℓkℓ) be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps σ to the permutation [i11,…,i1k1,…,iℓ1,…,iℓkℓ] in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Maps σ to the permutation [i11,…,i1k1,…,iℓ1,…,iℓkℓ] in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation π is a possibly empty interval of values that appear in consecutive positions of π. The lattice of intervals of π has as elements the intervals of π, ordered by set inclusion.
An interval of a permutation π is a possibly empty interval of values that appear in consecutive positions of π. The lattice of intervals of π has as elements the intervals of π, ordered by set inclusion.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!