Identifier
-
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001656: Graphs ⟶ ℤ
Values
[1] => [[1]] => [1] => ([],1) => 1
[2] => [[1,2]] => [1,2] => ([],2) => 2
[1,1] => [[1],[2]] => [2,1] => ([(0,1)],2) => 2
[3] => [[1,2,3]] => [1,2,3] => ([],3) => 3
[2,1] => [[1,2],[3]] => [3,1,2] => ([(0,2),(1,2)],3) => 2
[1,1,1] => [[1],[2],[3]] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => 3
[4] => [[1,2,3,4]] => [1,2,3,4] => ([],4) => 4
[3,1] => [[1,2,3],[4]] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 3
[2,2] => [[1,2],[3,4]] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[2,1,1] => [[1,2],[3],[4]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[5] => [[1,2,3,4,5]] => [1,2,3,4,5] => ([],5) => 5
[4,1] => [[1,2,3,4],[5]] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,2] => [[1,2,3],[4,5]] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
[3,1,1] => [[1,2,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,2,1] => [[1,2],[3,4],[5]] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[2,1,1,1] => [[1,2],[3],[4],[5]] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[6] => [[1,2,3,4,5,6]] => [1,2,3,4,5,6] => ([],6) => 6
[5,1] => [[1,2,3,4,5],[6]] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[4,2] => [[1,2,3,4],[5,6]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[4,1,1] => [[1,2,3,4],[5],[6]] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
[3,2,1] => [[1,2,3],[4,5],[6]] => [6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7] => [[1,2,3,4,5,6,7]] => [1,2,3,4,5,6,7] => ([],7) => 7
[6,1] => [[1,2,3,4,5,6],[7]] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 6
[5,2] => [[1,2,3,4,5],[6,7]] => [6,7,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,3] => [[1,2,3,4],[5,6,7]] => [5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [7,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [7,6,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [7,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [7,6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [7,6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [7,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [7,6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The monophonic position number of a graph.
A subset M of the vertex set of a graph is a monophonic position set if no three vertices of M lie on a common induced path. The monophonic position number is the size of a largest monophonic position set.
A subset M of the vertex set of a graph is a monophonic position set if no three vertices of M lie on a common induced path. The monophonic position number is the size of a largest monophonic position set.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!