Identifier
            
            - 
Mp00159:
Permutations
—Demazure product with inverse⟶
Permutations
		
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001645: Graphs ⟶ ℤ 
                Values
            
            [1] => [1] => [1] => ([],1) => 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2) => 2
[2,3,1] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3) => 4
[3,1,2] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3) => 4
[3,2,1] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3) => 4
[2,4,1,5,6,3] => [3,6,1,4,5,2] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,4,1,6,5,3] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,5,1,3,6,4] => [3,6,1,4,5,2] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,5,1,4,6,3] => [3,6,1,4,5,2] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,5,1,6,3,4] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,5,1,6,4,3] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,6,1,3,4,5] => [3,6,1,4,5,2] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,6,1,3,5,4] => [3,6,1,4,5,2] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,6,1,4,3,5] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,6,1,4,5,3] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,6,1,5,3,4] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,6,1,5,4,3] => [3,6,1,5,4,2] => [5,4,6,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,4,1,5,6,7,3] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,4,1,5,7,6,3] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,4,1,6,5,7,3] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,4,1,6,7,5,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,4,1,7,5,6,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,4,1,7,6,5,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,4,6,3,1,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[2,4,7,3,1,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[2,4,7,3,1,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[2,5,1,3,6,7,4] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,5,1,3,7,6,4] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,5,1,4,6,7,3] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,5,1,4,7,6,3] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,5,1,6,3,7,4] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,5,1,6,4,7,3] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,5,1,6,7,3,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,5,1,6,7,4,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,5,1,7,3,6,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,5,1,7,4,6,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,5,1,7,6,3,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,5,1,7,6,4,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,3,4,7,5] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,3,5,7,4] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,3,7,4,5] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,3,7,5,4] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,4,3,7,5] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,4,5,7,3] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,4,7,3,5] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,4,7,5,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,5,3,7,4] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,5,4,7,3] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,6,1,5,7,3,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,5,7,4,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,7,3,4,5] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,7,3,5,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,7,4,3,5] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,7,4,5,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,7,5,3,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,6,1,7,5,4,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,3,4,5,6] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,3,4,6,5] => [3,7,1,4,5,6,2] => [4,5,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,3,5,4,6] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,3,5,6,4] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,3,6,4,5] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,3,6,5,4] => [3,7,1,4,6,5,2] => [4,6,5,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,4,3,5,6] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,4,3,6,5] => [3,7,1,5,4,6,2] => [5,4,6,7,1,3,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 7
[2,7,1,4,5,3,6] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,4,5,6,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,4,6,3,5] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,4,6,5,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,5,3,4,6] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,5,3,6,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,5,4,3,6] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,5,4,6,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,5,6,3,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,5,6,4,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,6,3,4,5] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,6,3,5,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,6,4,3,5] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,6,4,5,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,6,5,3,4] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[2,7,1,6,5,4,3] => [3,7,1,6,5,4,2] => [5,6,4,7,1,3,2] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 7
[3,4,6,1,2,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[3,4,6,2,1,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[3,4,7,1,2,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[3,4,7,1,2,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[3,4,7,2,1,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[3,4,7,2,1,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,2,6,1,3,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,2,6,3,1,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,2,7,1,3,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,2,7,1,3,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,2,7,3,1,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,2,7,3,1,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,3,6,1,2,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,3,6,2,1,7,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,3,7,1,2,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,3,7,1,2,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,3,7,2,1,5,6] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
[4,3,7,2,1,6,5] => [5,4,7,2,1,6,3] => [6,7,2,4,1,5,3] => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 7
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                    /
                    
                        
			search for generating function
                        
                            searching the database for statistics with the same generating function
                        
                    
                    
                Description
            The pebbling number of a connected graph.
	Map
            Clarke-Steingrimsson-Zeng inverse
	    
	Description
            The inverse of the Clarke-Steingrimsson-Zeng map, sending excedances to descents.
This is the inverse of the map $\Phi$ in [1, sec.3].
	This is the inverse of the map $\Phi$ in [1, sec.3].
Map
            graph of inversions
	    
	Description
            The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
	For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
            Demazure product with inverse
	    
	Description
            This map sends a permutation $\pi$ to $\pi^{-1} \star \pi$ where $\star$ denotes the Demazure product on permutations.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
	This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!