Values
=>
Cc0020;cc-rep-0
Cc0020;cc-rep
([],1)=>([],0)=>0
([],2)=>([],0)=>0
([(0,1)],2)=>([],1)=>0
([],3)=>([],0)=>0
([(1,2)],3)=>([],1)=>0
([(0,2),(1,2)],3)=>([(0,1)],2)=>1
([(0,1),(0,2),(1,2)],3)=>([(0,1),(0,2),(1,2)],3)=>2
([],4)=>([],0)=>0
([(2,3)],4)=>([],1)=>0
([(1,3),(2,3)],4)=>([(0,1)],2)=>1
([(0,3),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>2
([(0,3),(1,2)],4)=>([],2)=>0
([(0,3),(1,2),(2,3)],4)=>([(0,2),(1,2)],3)=>1
([(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>2
([(0,3),(1,2),(1,3),(2,3)],4)=>([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3)],4)=>([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([],5)=>([],0)=>0
([(3,4)],5)=>([],1)=>0
([(2,4),(3,4)],5)=>([(0,1)],2)=>1
([(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>2
([(0,4),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(1,4),(2,3)],5)=>([],2)=>0
([(1,4),(2,3),(3,4)],5)=>([(0,2),(1,2)],3)=>1
([(0,1),(2,4),(3,4)],5)=>([(1,2)],3)=>1
([(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>2
([(0,4),(1,4),(2,3),(3,4)],5)=>([(0,3),(1,2),(1,3),(2,3)],4)=>2
([(1,4),(2,3),(2,4),(3,4)],5)=>([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(1,3),(1,4),(2,3),(2,4)],5)=>([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(0,4),(1,3),(2,3),(2,4)],5)=>([(0,3),(1,2),(2,3)],4)=>1
([(0,1),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,3),(2,3)],4)=>2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([],6)=>([],0)=>0
([(4,5)],6)=>([],1)=>0
([(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>2
([(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(2,5),(3,4)],6)=>([],2)=>0
([(2,5),(3,4),(4,5)],6)=>([(0,2),(1,2)],3)=>1
([(1,2),(3,5),(4,5)],6)=>([(1,2)],3)=>1
([(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>2
([(1,5),(2,5),(3,4),(4,5)],6)=>([(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,1),(2,5),(3,5),(4,5)],6)=>([(1,2),(1,3),(2,3)],4)=>2
([(2,5),(3,4),(3,5),(4,5)],6)=>([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(2,4),(2,5),(3,4),(3,5)],6)=>([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(0,5),(1,5),(2,4),(3,4)],6)=>([(0,3),(1,2)],4)=>1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(0,5),(1,4),(2,3)],6)=>([],3)=>0
([(1,5),(2,4),(3,4),(3,5)],6)=>([(0,3),(1,2),(2,3)],4)=>1
([(0,1),(2,5),(3,4),(4,5)],6)=>([(1,3),(2,3)],4)=>1
([(1,2),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(2,3)],4)=>2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>([(0,4),(1,3),(2,3),(2,4)],5)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>([(0,1),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>2
([],7)=>([],0)=>0
([(5,6)],7)=>([],1)=>0
([(4,6),(5,6)],7)=>([(0,1)],2)=>1
([(3,6),(4,6),(5,6)],7)=>([(0,1),(0,2),(1,2)],3)=>2
([(2,6),(3,6),(4,6),(5,6)],7)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(3,6),(4,5)],7)=>([],2)=>0
([(3,6),(4,5),(5,6)],7)=>([(0,2),(1,2)],3)=>1
([(2,3),(4,6),(5,6)],7)=>([(1,2)],3)=>1
([(4,5),(4,6),(5,6)],7)=>([(0,1),(0,2),(1,2)],3)=>2
([(2,6),(3,6),(4,5),(5,6)],7)=>([(0,3),(1,2),(1,3),(2,3)],4)=>2
([(1,2),(3,6),(4,6),(5,6)],7)=>([(1,2),(1,3),(2,3)],4)=>2
([(3,6),(4,5),(4,6),(5,6)],7)=>([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(3,5),(3,6),(4,5),(4,6)],7)=>([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(1,6),(2,6),(3,5),(4,5)],7)=>([(0,3),(1,2)],4)=>1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)=>([(0,1),(2,3),(2,4),(3,4)],5)=>2
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>2
([(1,6),(2,5),(3,4)],7)=>([],3)=>0
([(2,6),(3,5),(4,5),(4,6)],7)=>([(0,3),(1,2),(2,3)],4)=>1
([(1,2),(3,6),(4,5),(5,6)],7)=>([(1,3),(2,3)],4)=>1
([(0,3),(1,2),(4,6),(5,6)],7)=>([(2,3)],4)=>1
([(2,3),(4,5),(4,6),(5,6)],7)=>([(1,2),(1,3),(2,3)],4)=>2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)=>([(1,4),(2,3),(2,4),(3,4)],5)=>2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)=>([(0,4),(1,3),(2,3),(2,4)],5)=>1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)=>([(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)=>([(0,1),(2,4),(3,4)],5)=>1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)=>([(0,1),(2,3),(2,4),(3,4)],5)=>2
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)=>([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)=>([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)=>([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)=>([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7)=>2
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)=>([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)=>([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)=>([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>3
([(0,1),(2,5),(3,4),(4,6),(5,6)],7)=>([(1,4),(2,3),(3,4)],5)=>1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)=>([(2,3),(2,4),(3,4)],5)=>2
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)=>([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)=>([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7)=>2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)=>([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)=>([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)=>([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)=>([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)=>2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)=>([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!