*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001629

-----------------------------------------------------------------------------
Collection: Integer compositions

-----------------------------------------------------------------------------
Description: The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(a):
    F = QuasiSymmetricFunctions(QQ).F()
    S = species.CycleSpecies().cycle_index_series()
    return F(S.coefficient(a.size())).coefficient(a)

-----------------------------------------------------------------------------
Statistic values:

[1,1,1]           => 1
[1,2]             => 0
[2,1]             => 0
[3]               => 1
[1,1,1,1]         => 0
[1,1,2]           => 1
[1,2,1]           => 2
[1,3]             => 0
[2,1,1]           => 1
[2,2]             => 1
[3,1]             => 0
[4]               => 1
[1,1,1,1,1]       => 1
[1,1,1,2]         => 0
[1,1,2,1]         => 1
[1,1,3]           => 2
[1,2,1,1]         => 1
[1,2,2]           => 4
[1,3,1]           => 3
[1,4]             => 0
[2,1,1,1]         => 0
[2,1,2]           => 3
[2,2,1]           => 4
[2,3]             => 1
[3,1,1]           => 2
[3,2]             => 1
[4,1]             => 0
[5]               => 1
[1,1,1,1,1,1]     => 0
[1,1,1,1,2]       => 1
[1,1,1,2,1]       => 2
[1,1,1,3]         => 2
[1,1,2,1,1]       => 4
[1,1,2,2]         => 5
[1,1,3,1]         => 4
[1,1,4]           => 2
[1,2,1,1,1]       => 2
[1,2,1,2]         => 7
[1,2,2,1]         => 10
[1,2,3]           => 6
[1,3,1,1]         => 4
[1,3,2]           => 7
[1,4,1]           => 4
[1,5]             => 0
[2,1,1,1,1]       => 1
[2,1,1,2]         => 3
[2,1,2,1]         => 7
[2,1,3]           => 4
[2,2,1,1]         => 5
[2,2,2]           => 11
[2,3,1]           => 7
[2,4]             => 2
[3,1,1,1]         => 2
[3,1,2]           => 4
[3,2,1]           => 6
[3,3]             => 3
[4,1,1]           => 2
[4,2]             => 2
[5,1]             => 0
[6]               => 1
[1,1,1,1,1,1,1]   => 1
[1,1,1,1,1,2]     => 0
[1,1,1,1,2,1]     => 2
[1,1,1,1,3]       => 3
[1,1,1,2,1,1]     => 4
[1,1,1,2,2]       => 10
[1,1,1,3,1]       => 8
[1,1,1,4]         => 2
[1,1,2,1,1,1]     => 4
[1,1,2,1,2]       => 15
[1,1,2,2,1]       => 23
[1,1,2,3]         => 12
[1,1,3,1,1]       => 11
[1,1,3,2]         => 15
[1,1,4,1]         => 7
[1,1,5]           => 3
[1,2,1,1,1,1]     => 2
[1,2,1,1,2]       => 12
[1,2,1,2,1]       => 25
[1,2,1,3]         => 15
[1,2,2,1,1]       => 23
[1,2,2,2]         => 38
[1,2,3,1]         => 25
[1,2,4]           => 10
[1,3,1,1,1]       => 8
[1,3,1,2]         => 18
[1,3,2,1]         => 25
[1,3,3]           => 15
[1,4,1,1]         => 7
[1,4,2]           => 12
[1,5,1]           => 5
[1,6]             => 0
[2,1,1,1,1,1]     => 0
[2,1,1,1,2]       => 5
[2,1,1,2,1]       => 12
[2,1,1,3]         => 7
[2,1,2,1,1]       => 15
[2,1,2,2]         => 25
[2,1,3,1]         => 18
[2,1,4]           => 8
[2,2,1,1,1]       => 10
[2,2,1,2]         => 25
[2,2,2,1]         => 38
[2,2,3]           => 23
[2,3,1,1]         => 15
[2,3,2]           => 25
[2,4,1]           => 12
[2,5]             => 2
[3,1,1,1,1]       => 3
[3,1,1,2]         => 7
[3,1,2,1]         => 15
[3,1,3]           => 11
[3,2,1,1]         => 12
[3,2,2]           => 23
[3,3,1]           => 15
[3,4]             => 4
[4,1,1,1]         => 2
[4,1,2]           => 8
[4,2,1]           => 10
[4,3]             => 4
[5,1,1]           => 3
[5,2]             => 2
[6,1]             => 0
[7]               => 1
[1,1,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,2]   => 1
[1,1,1,1,1,2,1]   => 4
[1,1,1,1,1,3]     => 2
[1,1,1,1,2,1,1]   => 7
[1,1,1,1,2,2]     => 13
[1,1,1,1,3,1]     => 10
[1,1,1,1,4]       => 5
[1,1,1,2,1,1,1]   => 10
[1,1,1,2,1,2]     => 24
[1,1,1,2,2,1]     => 40
[1,1,1,2,3]       => 24
[1,1,1,3,1,1]     => 18
[1,1,1,3,2]       => 32
[1,1,1,4,1]       => 16
[1,1,1,5]         => 4
[1,1,2,1,1,1,1]   => 7
[1,1,2,1,1,2]     => 27
[1,1,2,1,2,1]     => 59
[1,1,2,1,3]       => 40
[1,1,2,2,1,1]     => 56
[1,1,2,2,2]       => 99
[1,1,2,3,1]       => 67
[1,1,2,4]         => 23
[1,1,3,1,1,1]     => 18
[1,1,3,1,2]       => 53
[1,1,3,2,1]       => 72
[1,1,3,3]         => 39
[1,1,4,1,1]       => 24
[1,1,4,2]         => 31
[1,1,5,1]         => 12
[1,1,6]           => 3
[1,2,1,1,1,1,1]   => 4
[1,2,1,1,1,2]     => 16
[1,2,1,1,2,1]     => 46
[1,2,1,1,3]       => 32
[1,2,1,2,1,1]     => 59
[1,2,1,2,2]       => 110
[1,2,1,3,1]       => 80
[1,2,1,4]         => 31
[1,2,2,1,1,1]     => 40
[1,2,2,1,2]       => 115
[1,2,2,2,1]       => 174
[1,2,2,3]         => 98
[1,2,3,1,1]       => 72
[1,2,3,2]         => 109
[1,2,4,1]         => 50
[1,2,5]           => 14
[1,3,1,1,1,1]     => 10
[1,3,1,1,2]       => 40
[1,3,1,2,1]       => 80
[1,3,1,3]         => 52
[1,3,2,1,1]       => 67
[1,3,2,2]         => 114
[1,3,3,1]         => 74
[1,3,4]           => 25
[1,4,1,1,1]       => 16
[1,4,1,2]         => 39
[1,4,2,1]         => 50
[1,4,3]           => 28
[1,5,1,1]         => 12
[1,5,2]           => 17
[1,6,1]           => 6
[1,7]             => 0
[2,1,1,1,1,1,1]   => 1
[2,1,1,1,1,2]     => 5
[2,1,1,1,2,1]     => 16
[2,1,1,1,3]       => 13
[2,1,1,2,1,1]     => 27
[2,1,1,2,2]       => 51
[2,1,1,3,1]       => 40
[2,1,1,4]         => 15
[2,1,2,1,1,1]     => 24
[2,1,2,1,2]       => 75
[2,1,2,2,1]       => 115
[2,1,2,3]         => 66
[2,1,3,1,1]       => 53
[2,1,3,2]         => 79
[2,1,4,1]         => 39
[2,1,5]           => 11
[2,2,1,1,1,1]     => 13
[2,2,1,1,2]       => 51
[2,2,1,2,1]       => 110
[2,2,1,3]         => 71
[2,2,2,1,1]       => 99
[2,2,2,2]         => 173
[2,2,3,1]         => 114
[2,2,4]           => 41
[2,3,1,1,1]       => 32
[2,3,1,2]         => 79
[2,3,2,1]         => 109
[2,3,3]           => 60
[2,4,1,1]         => 31
[2,4,2]           => 47
[2,5,1]           => 17
[2,6]             => 3
[3,1,1,1,1,1]     => 2
[3,1,1,1,2]       => 13
[3,1,1,2,1]       => 32
[3,1,1,3]         => 23
[3,1,2,1,1]       => 40
[3,1,2,2]         => 71
[3,1,3,1]         => 52
[3,1,4]           => 19
[3,2,1,1,1]       => 24
[3,2,1,2]         => 66
[3,2,2,1]         => 98
[3,2,3]           => 57
[3,3,1,1]         => 39
[3,3,2]           => 60
[3,4,1]           => 28
[3,5]             => 6
[4,1,1,1,1]       => 5
[4,1,1,2]         => 15
[4,1,2,1]         => 31
[4,1,3]           => 19
[4,2,1,1]         => 23
[4,2,2]           => 41
[4,3,1]           => 25
[4,4]             => 9
[5,1,1,1]         => 4
[5,1,2]           => 11
[5,2,1]           => 14
[5,3]             => 6
[6,1,1]           => 3
[6,2]             => 3
[7,1]             => 0
[8]               => 1

-----------------------------------------------------------------------------
Created: Oct 02, 2020 at 07:18 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Oct 02, 2020 at 07:18 by Martin Rubey