Identifier
- St001600: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>2
[1,1]=>0
[3]=>4
[2,1]=>2
[1,1,1]=>0
[4]=>11
[3,1]=>9
[2,2]=>8
[2,1,1]=>3
[1,1,1,1]=>1
[5]=>34
[4,1]=>56
[3,2]=>58
[3,1,1]=>36
[2,2,1]=>38
[2,1,1,1]=>16
[1,1,1,1,1]=>6
[6]=>156
[5,1]=>388
[4,2]=>600
[4,1,1]=>460
[3,3]=>264
[3,2,1]=>712
[3,1,1,1]=>340
[2,2,2]=>240
[2,2,1,1]=>288
[2,1,1,1,1]=>148
[1,1,1,1,1,1]=>28
[7]=>1044
[6,1]=>4052
[5,2]=>8032
[5,1,1]=>7236
[4,3]=>7236
[4,2,1]=>15788
[4,1,1,1]=>7720
[3,3,1]=>8844
[3,2,2]=>8788
[3,2,1,1]=>12948
[3,1,1,1,1]=>5036
[2,2,2,1]=>5052
[2,2,1,1,1]=>4416
[2,1,1,1,1,1]=>1788
[1,1,1,1,1,1,1]=>252
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs.
Code
def statistic(mu): s = SymmetricFunctions(QQ).s() F = LazyCombinatorialSpecies(QQ, "X").Graphs().cycle_index_series() return F.coefficient(mu.size()).scalar(s(mu))
Created
Sep 26, 2020 at 23:20 by Martin Rubey
Updated
Sep 26, 2025 at 17:07 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!