edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>2 [1,1]=>0 [3]=>4 [2,1]=>2 [1,1,1]=>0 [4]=>11 [3,1]=>9 [2,2]=>8 [2,1,1]=>3 [1,1,1,1]=>1 [5]=>34 [4,1]=>56 [3,2]=>58 [3,1,1]=>36 [2,2,1]=>38 [2,1,1,1]=>16 [1,1,1,1,1]=>6 [6]=>156 [5,1]=>388 [4,2]=>600 [4,1,1]=>460 [3,3]=>264 [3,2,1]=>712 [3,1,1,1]=>340 [2,2,2]=>240 [2,2,1,1]=>288 [2,1,1,1,1]=>148 [1,1,1,1,1,1]=>28 [7]=>1044 [6,1]=>4052 [5,2]=>8032 [5,1,1]=>7236 [4,3]=>7236 [4,2,1]=>15788 [4,1,1,1]=>7720 [3,3,1]=>8844 [3,2,2]=>8788 [3,2,1,1]=>12948 [3,1,1,1,1]=>5036 [2,2,2,1]=>5052 [2,2,1,1,1]=>4416 [2,1,1,1,1,1]=>1788 [1,1,1,1,1,1,1]=>252
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs.
Code
def statistic(mu):
    s = SymmetricFunctions(QQ).s()
    F = LazyCombinatorialSpecies(QQ, "X").Graphs().cycle_index_series()
    return F.coefficient(mu.size()).scalar(s(mu))

Created
Sep 26, 2020 at 23:20 by Martin Rubey
Updated
Sep 26, 2025 at 17:07 by Martin Rubey