*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001590

-----------------------------------------------------------------------------
Collection: Perfect matchings

-----------------------------------------------------------------------------
Description: The crossing number of a perfect matching.

This is the maximal number of chords in the standard representation of a perfect matching that mutually cross.

-----------------------------------------------------------------------------
References: [1]   Chen, W. Y. C., Deng, E. Y. P., Du, R. R. X., Stanley, R. P., Yan, C. H. Crossings and nestings of matchings and partitions [[MathSciNet:2272140]] [[arXiv:math/0501230]]

-----------------------------------------------------------------------------
Code:
def statistic(m):
    return max(len(la) for la in to_oscillating(m))

def to_oscillating(m):
    RuleRSK = GrowthDiagram.rules.RSK()
    m = PerfectMatching(m)
    n = m.size()
    filling = {(i-1, n-j): 1 for i, j in m.arcs()}
    shape = list(range(n-1,0,-1))
    return RuleRSK(filling, shape=shape).out_labels()


-----------------------------------------------------------------------------
Statistic values:

[(1,2)]                          => 1
[(1,2),(3,4)]                    => 1
[(1,3),(2,4)]                    => 2
[(1,4),(2,3)]                    => 1
[(1,2),(3,4),(5,6)]              => 1
[(1,3),(2,4),(5,6)]              => 2
[(1,4),(2,3),(5,6)]              => 1
[(1,5),(2,3),(4,6)]              => 2
[(1,6),(2,3),(4,5)]              => 1
[(1,6),(2,4),(3,5)]              => 2
[(1,5),(2,4),(3,6)]              => 2
[(1,4),(2,5),(3,6)]              => 3
[(1,3),(2,5),(4,6)]              => 2
[(1,2),(3,5),(4,6)]              => 2
[(1,2),(3,6),(4,5)]              => 1
[(1,3),(2,6),(4,5)]              => 2
[(1,4),(2,6),(3,5)]              => 2
[(1,5),(2,6),(3,4)]              => 2
[(1,6),(2,5),(3,4)]              => 1
[(1,2),(3,4),(5,6),(7,8)]        => 1
[(1,3),(2,4),(5,6),(7,8)]        => 2
[(1,4),(2,3),(5,6),(7,8)]        => 1
[(1,5),(2,3),(4,6),(7,8)]        => 2
[(1,6),(2,3),(4,5),(7,8)]        => 1
[(1,7),(2,3),(4,5),(6,8)]        => 2
[(1,8),(2,3),(4,5),(6,7)]        => 1
[(1,8),(2,4),(3,5),(6,7)]        => 2
[(1,7),(2,4),(3,5),(6,8)]        => 2
[(1,6),(2,4),(3,5),(7,8)]        => 2
[(1,5),(2,4),(3,6),(7,8)]        => 2
[(1,4),(2,5),(3,6),(7,8)]        => 3
[(1,3),(2,5),(4,6),(7,8)]        => 2
[(1,2),(3,5),(4,6),(7,8)]        => 2
[(1,2),(3,6),(4,5),(7,8)]        => 1
[(1,3),(2,6),(4,5),(7,8)]        => 2
[(1,4),(2,6),(3,5),(7,8)]        => 2
[(1,5),(2,6),(3,4),(7,8)]        => 2
[(1,6),(2,5),(3,4),(7,8)]        => 1
[(1,7),(2,5),(3,4),(6,8)]        => 2
[(1,8),(2,5),(3,4),(6,7)]        => 1
[(1,8),(2,6),(3,4),(5,7)]        => 2
[(1,7),(2,6),(3,4),(5,8)]        => 2
[(1,6),(2,7),(3,4),(5,8)]        => 3
[(1,5),(2,7),(3,4),(6,8)]        => 2
[(1,4),(2,7),(3,5),(6,8)]        => 2
[(1,3),(2,7),(4,5),(6,8)]        => 2
[(1,2),(3,7),(4,5),(6,8)]        => 2
[(1,2),(3,8),(4,5),(6,7)]        => 1
[(1,3),(2,8),(4,5),(6,7)]        => 2
[(1,4),(2,8),(3,5),(6,7)]        => 2
[(1,5),(2,8),(3,4),(6,7)]        => 2
[(1,6),(2,8),(3,4),(5,7)]        => 2
[(1,7),(2,8),(3,4),(5,6)]        => 2
[(1,8),(2,7),(3,4),(5,6)]        => 1
[(1,8),(2,7),(3,5),(4,6)]        => 2
[(1,7),(2,8),(3,5),(4,6)]        => 2
[(1,6),(2,8),(3,5),(4,7)]        => 2
[(1,5),(2,8),(3,6),(4,7)]        => 3
[(1,4),(2,8),(3,6),(5,7)]        => 2
[(1,3),(2,8),(4,6),(5,7)]        => 2
[(1,2),(3,8),(4,6),(5,7)]        => 2
[(1,2),(3,7),(4,6),(5,8)]        => 2
[(1,3),(2,7),(4,6),(5,8)]        => 2
[(1,4),(2,7),(3,6),(5,8)]        => 2
[(1,5),(2,7),(3,6),(4,8)]        => 3
[(1,6),(2,7),(3,5),(4,8)]        => 3
[(1,7),(2,6),(3,5),(4,8)]        => 2
[(1,8),(2,6),(3,5),(4,7)]        => 2
[(1,8),(2,5),(3,6),(4,7)]        => 3
[(1,7),(2,5),(3,6),(4,8)]        => 3
[(1,6),(2,5),(3,7),(4,8)]        => 3
[(1,5),(2,6),(3,7),(4,8)]        => 4
[(1,4),(2,6),(3,7),(5,8)]        => 3
[(1,3),(2,6),(4,7),(5,8)]        => 3
[(1,2),(3,6),(4,7),(5,8)]        => 3
[(1,2),(3,5),(4,7),(6,8)]        => 2
[(1,3),(2,5),(4,7),(6,8)]        => 2
[(1,4),(2,5),(3,7),(6,8)]        => 3
[(1,5),(2,4),(3,7),(6,8)]        => 2
[(1,6),(2,4),(3,7),(5,8)]        => 3
[(1,7),(2,4),(3,6),(5,8)]        => 2
[(1,8),(2,4),(3,6),(5,7)]        => 2
[(1,8),(2,3),(4,6),(5,7)]        => 2
[(1,7),(2,3),(4,6),(5,8)]        => 2
[(1,6),(2,3),(4,7),(5,8)]        => 3
[(1,5),(2,3),(4,7),(6,8)]        => 2
[(1,4),(2,3),(5,7),(6,8)]        => 2
[(1,3),(2,4),(5,7),(6,8)]        => 2
[(1,2),(3,4),(5,7),(6,8)]        => 2
[(1,2),(3,4),(5,8),(6,7)]        => 1
[(1,3),(2,4),(5,8),(6,7)]        => 2
[(1,4),(2,3),(5,8),(6,7)]        => 1
[(1,5),(2,3),(4,8),(6,7)]        => 2
[(1,6),(2,3),(4,8),(5,7)]        => 2
[(1,7),(2,3),(4,8),(5,6)]        => 2
[(1,8),(2,3),(4,7),(5,6)]        => 1
[(1,8),(2,4),(3,7),(5,6)]        => 2
[(1,7),(2,4),(3,8),(5,6)]        => 2
[(1,6),(2,4),(3,8),(5,7)]        => 2
[(1,5),(2,4),(3,8),(6,7)]        => 2
[(1,4),(2,5),(3,8),(6,7)]        => 3
[(1,3),(2,5),(4,8),(6,7)]        => 2
[(1,2),(3,5),(4,8),(6,7)]        => 2
[(1,2),(3,6),(4,8),(5,7)]        => 2
[(1,3),(2,6),(4,8),(5,7)]        => 2
[(1,4),(2,6),(3,8),(5,7)]        => 3
[(1,5),(2,6),(3,8),(4,7)]        => 3
[(1,6),(2,5),(3,8),(4,7)]        => 2
[(1,7),(2,5),(3,8),(4,6)]        => 2
[(1,8),(2,5),(3,7),(4,6)]        => 2
[(1,8),(2,6),(3,7),(4,5)]        => 2
[(1,7),(2,6),(3,8),(4,5)]        => 2
[(1,6),(2,7),(3,8),(4,5)]        => 3
[(1,5),(2,7),(3,8),(4,6)]        => 3
[(1,4),(2,7),(3,8),(5,6)]        => 3
[(1,3),(2,7),(4,8),(5,6)]        => 2
[(1,2),(3,7),(4,8),(5,6)]        => 2
[(1,2),(3,8),(4,7),(5,6)]        => 1
[(1,3),(2,8),(4,7),(5,6)]        => 2
[(1,4),(2,8),(3,7),(5,6)]        => 2
[(1,5),(2,8),(3,7),(4,6)]        => 2
[(1,6),(2,8),(3,7),(4,5)]        => 2
[(1,7),(2,8),(3,6),(4,5)]        => 2
[(1,8),(2,7),(3,6),(4,5)]        => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 1
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 1
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 2
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 2
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 1
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 2
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 2
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 2
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 2
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 2
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 1
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 2
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 1
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 2
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 1
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 2
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 1
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 2
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 2
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 2
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 3
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 2
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 1
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 2
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 2
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 2
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 2
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 2
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 2
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 1
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 2
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 2
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 3
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 2
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 2
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 2
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 1
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 2
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 2
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 2
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 2
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 2
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 2
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 2
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 2
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 2
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 2
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 2
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 3
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 2
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 2
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 2
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 2
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 3
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 2
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 2
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 3
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 2
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 2
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 2
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 2
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 2
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 3
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 3
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 3
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 2
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 2
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 2
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 2
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 3
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 3
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 3
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 3
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 3
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 4
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 3
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 3
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 3
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 3
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 2
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 2
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 2
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 2
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 2
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 2
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 3
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 1
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 1
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 2
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 1
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 2
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 1
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 2
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 2
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 3
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 3
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 3
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 2
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 2
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 2
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 2
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 2
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 3
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 3
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 1
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 2
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 2
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 2
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 2
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 2
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 2
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 2
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 2
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 3
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 2
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 2
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 2
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 2
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 2
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 2
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 1
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 2
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 2
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 2
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 2
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 2
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 2
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 2
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 1
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 2
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 2
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 2
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 3
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 2
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 2
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 2
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 2
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 2
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 2
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 2
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 2
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 2
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 2
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 3
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 3
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 2
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 2
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 3
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 3
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 3
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 4
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 3
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 3
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 3
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 3
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 3
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 2
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 2
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 3
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 3
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 3
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 2
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 3
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 2
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 2
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 2
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 2
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 3
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 2
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 3
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 3
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 3
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 2
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 2
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 2
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 3
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 2
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 2
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 2
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 2
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 3
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 2
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 2
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 1
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 1
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 2
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 2
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 2
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 2
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 2
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 1
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 2
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 2
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 2
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 2
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 3
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 2
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 2
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 3
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 3
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 2
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 2
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 2
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 2
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 2
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 2
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 2
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 3
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 3
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 3
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 2
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 2
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 2
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 2
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 3
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 3
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 3
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 3
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 2
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 2
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 2
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 2
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 2
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 3
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 3
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 3
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 3
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 3
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 2
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 2
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 2
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 2
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 2
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 2
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 2
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 2
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 2
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 2
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 2
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 2
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 2
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 3
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 2
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 2
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 2
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 2
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 2
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 2
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 3
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 3
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 3
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 3
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 3
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 2
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 2
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 2
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 2
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 2
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 3
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 3
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 3
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 3
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 3
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 3
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 3
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 3
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 4
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 3
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 3
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 3
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 3
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 2
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 2
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 2
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 3
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 2
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 3
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 3
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 3
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 2
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 3
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 2
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 2
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 2
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 2
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 2
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 2
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 3
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 2
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 2
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 2
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 2
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 3
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 3
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 2
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 2
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 2
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 2
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 3
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 3
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 2
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 3
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 3
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 3
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 2
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 3
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 3
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 2
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 2
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 3
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 3
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 3
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 3
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 4
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 3
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 3
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 3
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 3
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 3
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 3
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 3
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 3
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 4
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 4
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 3
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 3
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 3
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 2
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 2
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 3
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 3
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 3
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 2
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 2
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 2
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 2
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 2
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 2
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 2
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 2
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 3
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 3
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 2
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 2
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 2
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 3
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 3
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 3
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 3
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 4
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 3
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 3
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 3
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 3
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 3
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 3
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 3
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 3
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 4
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 3
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 3
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 3
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 3
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 3
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 3
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 3
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 4
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 4
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 3
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 3
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 3
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 3
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 4
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 4
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 4
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 4
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 5
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 4
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 4
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 4
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 4
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 3
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 3
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 3
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 4
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 3
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 4
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 3
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 3
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 3
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 3
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 3
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 3
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 3
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 3
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 4
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 3
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 3
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 3
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 3
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 3
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 3
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 4
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 3
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 3
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 3
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 3
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 3
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 2
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 3
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 2
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 3
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 2
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 2
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 3
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 3
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 2
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 3
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 3
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 3
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 3
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 4
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 3
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 3
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 3
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 3
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 3
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 2
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 2
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 3
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 2
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 3
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 3
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 2
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 2
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 3
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 3
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 3
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 3
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 3
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 4
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 3
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 3
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 3
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 2
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 2
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 3
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 3
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 2
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 3
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 2
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 2
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 2
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 3
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 3
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 2
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 2
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 2
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 2
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 2
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 2
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 3
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 2
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 2
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 2
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 2
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 3
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 3
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 2
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 2
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 3
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 3
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 3
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 4
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 3
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 3
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 3
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 3
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 3
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 2
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 2
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 3
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 2
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 3
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 2
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 2
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 2
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 2
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 3
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 2
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 2
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 3
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 2
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 2
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 3
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 2
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 2
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 3
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 2
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 1
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 2
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 1
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 1
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 2
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 2
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 1
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 2
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 2
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 2
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 2
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 2
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 3
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 1
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 2
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 2
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 1
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 2
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 2
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 2
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 1
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 2
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 2
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 2
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 2
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 3
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 2
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 2
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 2
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 2
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 2
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 3
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 3
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 2
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 2
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 2
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 2
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 2
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 3
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 3
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 3
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 2
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 2
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 2
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 1
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 2
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 2
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 2
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 2
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 2
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 2
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 2
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 1
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 2
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 2
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 2
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 2
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 2
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 3
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 2
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 2
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 2
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 2
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 2
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 3
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 3
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 3
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 3
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 2
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 2
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 2
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 2
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 2
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 3
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 3
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 3
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 2
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 3
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 3
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 2
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 2
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 2
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 2
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 3
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 3
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 3
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 3
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 3
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 4
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 3
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 3
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 3
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 3
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 2
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 3
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 2
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 2
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 2
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 2
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 3
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 2
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 2
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 3
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 3
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 2
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 2
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 2
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 2
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 2
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 2
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 3
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 3
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 2
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 3
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 2
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 3
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 3
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 3
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 4
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 3
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 3
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 3
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 3
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 3
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 3
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 3
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 3
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 3
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 4
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 4
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 3
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 3
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 3
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 2
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 2
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 2
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 3
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 3
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 3
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 2
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 2
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 2
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 3
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 3
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 3
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 3
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 2
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 2
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 2
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 2
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 3
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 3
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 2
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 2
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 2
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 2
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 2
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 2
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 2
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 3
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 3
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 3
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 2
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 2
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 2
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 2
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 2
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 2
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 3
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 3
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 3
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 3
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 2
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 2
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 3
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 3
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 3
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 4
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 4
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 4
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 3
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 3
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 3
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 3
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 3
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 3
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 4
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 4
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 3
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 3
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 3
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 3
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 3
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 3
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 3
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 3
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 3
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 4
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 3
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 3
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 2
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 3
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 3
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 3
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 2
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 2
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 2
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 2
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 3
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 3
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 3
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 1
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 2
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 1
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 2
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 2
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 2
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 2
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 1
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 2
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 2
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 2
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 2
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 2
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 2
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 2
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 2
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 2
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 3
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 3
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 2
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 2
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 2
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 2
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 2
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 2
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 2
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 2
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 3
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 3
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 3
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 2
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 2
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 2
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 3
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 3
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 3
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 3
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 2
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 2
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 2
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 2
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 2
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 3
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 3
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 3
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 3
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 3
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 2
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 2
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 1
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 2
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 2
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 2
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 2
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 2
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 2
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 2
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 1

-----------------------------------------------------------------------------
Created: Sep 10, 2020 at 21:12 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Sep 10, 2020 at 21:12 by Martin Rubey