Identifier
-
Mp00202:
Integer partitions
—first row removal⟶
Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001583: Permutations ⟶ ℤ (values match St000246The number of non-inversions of a permutation.)
Values
[1,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[2,2] => [2] => [[1,2]] => [1,2] => 1
[2,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[1,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[3,2] => [2] => [[1,2]] => [1,2] => 1
[3,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[2,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[2,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[1,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[4,2] => [2] => [[1,2]] => [1,2] => 1
[4,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[3,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[3,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[3,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[2,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[2,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[2,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[5,2] => [2] => [[1,2]] => [1,2] => 1
[5,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[4,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[4,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[4,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[3,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[3,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[3,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[3,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[6,2] => [2] => [[1,2]] => [1,2] => 1
[6,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[5,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[5,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[5,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[4,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[4,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[4,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[4,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[4,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[7,2] => [2] => [[1,2]] => [1,2] => 1
[7,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[6,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[6,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[6,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[5,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[5,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[5,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[5,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[5,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[8,2] => [2] => [[1,2]] => [1,2] => 1
[8,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[7,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[7,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[7,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[6,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[6,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[6,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[6,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[6,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[9,2] => [2] => [[1,2]] => [1,2] => 1
[9,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[8,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[8,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[8,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[7,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[7,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[7,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[7,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[7,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[10,2] => [2] => [[1,2]] => [1,2] => 1
[10,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[9,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[9,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[9,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[8,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[8,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[8,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[8,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[8,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[11,2] => [2] => [[1,2]] => [1,2] => 1
[11,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[10,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[10,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[10,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[9,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[9,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[9,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[9,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[9,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[12,2] => [2] => [[1,2]] => [1,2] => 1
[12,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[11,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[11,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[11,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
[10,4] => [4] => [[1,2,3,4]] => [1,2,3,4] => 6
[10,3,1] => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 5
[10,2,2] => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
[10,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 3
[10,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 0
[13,2] => [2] => [[1,2]] => [1,2] => 1
[13,1,1] => [1,1] => [[1],[2]] => [2,1] => 0
[12,3] => [3] => [[1,2,3]] => [1,2,3] => 3
[12,2,1] => [2,1] => [[1,3],[2]] => [2,1,3] => 2
[12,1,1,1] => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 0
>>> Load all 126 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau T labeled down (in English convention) each column to the shape of a partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!