Identifier
Values
[[],[]] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
[[[]]] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[],[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Map
connected complement
Description
The componentwise connected complement of a graph.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
block-cut tree
Description
Sends a graph to its block-cut tree.
The block-cut tree has a vertex for each block and for each cut-vertex of the given graph, and there is an edge for each pair of block and cut-vertex that belongs to that block. A block is a maximal biconnected (or 2-vertex connected) subgraph. A cut-vertex is a vertex whose removal increases the number of connected components.
The block-cut tree has a vertex for each block and for each cut-vertex of the given graph, and there is an edge for each pair of block and cut-vertex that belongs to that block. A block is a maximal biconnected (or 2-vertex connected) subgraph. A cut-vertex is a vertex whose removal increases the number of connected components.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!