Identifier
Values
[(1,2)] => [1,0] => [1,1,0,0] => [1,1,0,0] => 1
[(1,2),(3,4)] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 1
[(1,3),(2,4)] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 1
[(1,4),(2,3)] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 1
[(1,2),(3,4),(5,6)] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[(1,3),(2,4),(5,6)] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[(1,4),(2,3),(5,6)] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[(1,5),(2,3),(4,6)] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
[(1,6),(2,3),(4,5)] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
[(1,6),(2,4),(3,5)] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[(1,5),(2,4),(3,6)] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[(1,4),(2,5),(3,6)] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[(1,3),(2,5),(4,6)] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
[(1,2),(3,5),(4,6)] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
[(1,2),(3,6),(4,5)] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
[(1,3),(2,6),(4,5)] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
[(1,4),(2,6),(3,5)] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[(1,5),(2,6),(3,4)] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[(1,6),(2,5),(3,4)] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[(1,2),(3,4),(5,6),(7,8)] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[(1,3),(2,4),(5,6),(7,8)] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,4),(2,3),(5,6),(7,8)] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,5),(2,3),(4,6),(7,8)] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,6),(2,3),(4,5),(7,8)] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,7),(2,3),(4,5),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,8),(2,3),(4,5),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,8),(2,4),(3,5),(6,7)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,7),(2,4),(3,5),(6,8)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,6),(2,4),(3,5),(7,8)] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,5),(2,4),(3,6),(7,8)] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,4),(2,5),(3,6),(7,8)] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,3),(2,5),(4,6),(7,8)] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,2),(3,5),(4,6),(7,8)] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[(1,2),(3,6),(4,5),(7,8)] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[(1,3),(2,6),(4,5),(7,8)] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,4),(2,6),(3,5),(7,8)] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,5),(2,6),(3,4),(7,8)] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,6),(2,5),(3,4),(7,8)] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,7),(2,5),(3,4),(6,8)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,8),(2,5),(3,4),(6,7)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,8),(2,6),(3,4),(5,7)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,7),(2,6),(3,4),(5,8)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,6),(2,7),(3,4),(5,8)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,5),(2,7),(3,4),(6,8)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,4),(2,7),(3,5),(6,8)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,3),(2,7),(4,5),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,2),(3,7),(4,5),(6,8)] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,2),(3,8),(4,5),(6,7)] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,3),(2,8),(4,5),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,4),(2,8),(3,5),(6,7)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,5),(2,8),(3,4),(6,7)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,6),(2,8),(3,4),(5,7)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,7),(2,8),(3,4),(5,6)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,8),(2,7),(3,4),(5,6)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,8),(2,7),(3,5),(4,6)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,7),(2,8),(3,5),(4,6)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,6),(2,8),(3,5),(4,7)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,5),(2,8),(3,6),(4,7)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,4),(2,8),(3,6),(5,7)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,3),(2,8),(4,6),(5,7)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,2),(3,8),(4,6),(5,7)] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,2),(3,7),(4,6),(5,8)] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,3),(2,7),(4,6),(5,8)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,4),(2,7),(3,6),(5,8)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,5),(2,7),(3,6),(4,8)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,6),(2,7),(3,5),(4,8)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,7),(2,6),(3,5),(4,8)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,8),(2,6),(3,5),(4,7)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,8),(2,5),(3,6),(4,7)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,7),(2,5),(3,6),(4,8)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,6),(2,5),(3,7),(4,8)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,5),(2,6),(3,7),(4,8)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,4),(2,6),(3,7),(5,8)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,3),(2,6),(4,7),(5,8)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,2),(3,6),(4,7),(5,8)] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,2),(3,5),(4,7),(6,8)] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,3),(2,5),(4,7),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,4),(2,5),(3,7),(6,8)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,5),(2,4),(3,7),(6,8)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,6),(2,4),(3,7),(5,8)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,7),(2,4),(3,6),(5,8)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,8),(2,4),(3,6),(5,7)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,8),(2,3),(4,6),(5,7)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,7),(2,3),(4,6),(5,8)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,6),(2,3),(4,7),(5,8)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,5),(2,3),(4,7),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,4),(2,3),(5,7),(6,8)] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,3),(2,4),(5,7),(6,8)] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,2),(3,4),(5,7),(6,8)] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,2),(3,4),(5,8),(6,7)] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,3),(2,4),(5,8),(6,7)] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,4),(2,3),(5,8),(6,7)] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,5),(2,3),(4,8),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,6),(2,3),(4,8),(5,7)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,7),(2,3),(4,8),(5,6)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,8),(2,3),(4,7),(5,6)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,8),(2,4),(3,7),(5,6)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,7),(2,4),(3,8),(5,6)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,6),(2,4),(3,8),(5,7)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,5),(2,4),(3,8),(6,7)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,4),(2,5),(3,8),(6,7)] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
>>> Load all 124 entries. <<<
[(1,3),(2,5),(4,8),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,2),(3,5),(4,8),(6,7)] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[(1,2),(3,6),(4,8),(5,7)] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,3),(2,6),(4,8),(5,7)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,4),(2,6),(3,8),(5,7)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,5),(2,6),(3,8),(4,7)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,6),(2,5),(3,8),(4,7)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,7),(2,5),(3,8),(4,6)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,8),(2,5),(3,7),(4,6)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,8),(2,6),(3,7),(4,5)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,7),(2,6),(3,8),(4,5)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,6),(2,7),(3,8),(4,5)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,5),(2,7),(3,8),(4,6)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,4),(2,7),(3,8),(5,6)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,3),(2,7),(4,8),(5,6)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,2),(3,7),(4,8),(5,6)] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,2),(3,8),(4,7),(5,6)] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,3),(2,8),(4,7),(5,6)] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,4),(2,8),(3,7),(5,6)] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[(1,5),(2,8),(3,7),(4,6)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,6),(2,8),(3,7),(4,5)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,7),(2,8),(3,6),(4,5)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[(1,8),(2,7),(3,6),(4,5)] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path.
The statistic returns zero in case that bimodule is the zero module.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
to Dyck path
Description
The Dyck path corresponding to the opener-closer sequence of the perfect matching.