Identifier
-
Mp00010:
Binary trees
—to ordered tree: left child = left brother⟶
Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001545: Graphs ⟶ ℤ
Values
[.,.] => [[]] => ([(0,1)],2) => ([(0,1)],2) => 2
[.,[.,.]] => [[[]]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[[.,.],.] => [[],[]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[.,[.,[.,.]]] => [[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],.]] => [[[],[]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
[[.,.],[.,.]] => [[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],.] => [[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],.],.] => [[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
[.,[.,[.,[.,.]]]] => [[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[.,[[.,.],.]]] => [[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],[.,.]]] => [[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,[.,.]],.]] => [[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],.],.]] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
[[.,.],[.,[.,.]]] => [[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,.],[[.,.],.]] => [[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[.,.]] => [[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,.]] => [[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[.,.]]],.] => [[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,[[.,.],.]],.] => [[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],[.,.]],.] => [[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,[.,.]],.],.] => [[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],.],.],.] => [[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
[.,[.,[.,[[.,.],.]]]] => [[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[.,[[[.,.],.],.]]] => [[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],[.,[.,.]]]] => [[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],.],[.,.]]] => [[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,[.,[.,.]]],.]] => [[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,[[.,.],.]],.]] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],[.,.]],.]] => [[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,[.,.]],.],.]] => [[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],.],.],.]] => [[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
[[.,.],[.,[[.,.],.]]] => [[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,.],[[[.,.],.],.]] => [[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,[.,.]]] => [[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],.],[.,.]] => [[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[[.,.],.]]],.] => [[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,[[[.,.],.],.]],.] => [[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],[.,[.,.]]],.] => [[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],.],[.,.]],.] => [[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,[.,[.,.]]],.],.] => [[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,[[.,.],.]],.],.] => [[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],[.,.]],.],.] => [[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,[.,.]],.],.],.] => [[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],.],.],.],.] => [[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
[.,[.,[.,[[[.,.],.],.]]]] => [[[[[],[],[]]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[.,[[[[.,.],.],.],.]]] => [[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,.],[[[.,.],.],.]]] => [[[],[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],.],[.,[.,.]]]] => [[[],[],[[[]]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[[.,.],.],[[.,.],.]]] => [[[],[],[[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],.],.],[.,.]]] => [[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,[.,[[.,.],.]]],.]] => [[[[[],[]]],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,[[[.,.],.],.]],.]] => [[[[],[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],[.,[.,.]]],.]] => [[[],[[[]]],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[[.,.],[[.,.],.]],.]] => [[[],[[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],.],[.,.]],.]] => [[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,[.,[.,.]]],.],.]] => [[[[[]]],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[[.,[[.,.],.]],.],.]] => [[[[],[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],[.,.]],.],.]] => [[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,[.,.]],.],.],.]] => [[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[[.,.],.],.],.],.]] => [[[],[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => 2
[[.,.],[.,[[[.,.],.],.]]] => [[],[[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,.],[[[[.,.],.],.],.]] => [[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[[[.,.],.],.]] => [[[]],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[[[.,.],.],.]] => [[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],.],[.,[.,.]]] => [[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],.],[[.,.],.]] => [[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[[[.,.],.],.]],[.,.]] => [[[],[],[]],[[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[[.,.],.],.],.],[.,.]] => [[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[[[.,.],.],.]]],.] => [[[[],[],[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,[[[[.,.],.],.],.]],.] => [[[],[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],[.,[[.,.],.]]],.] => [[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],[[[.,.],.],.]],.] => [[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],.],[.,[.,.]]],.] => [[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],[[.,.],.]],.] => [[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],.],.],[.,.]],.] => [[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,[.,[[.,.],.]]],.],.] => [[[[],[]]],[],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,[[[.,.],.],.]],.],.] => [[[],[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],[.,[.,.]]],.],.] => [[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],[[.,.],.]],.],.] => [[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],.],[.,.]],.],.] => [[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,[.,[.,.]]],.],.],.] => [[[[]]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,[[.,.],.]],.],.],.] => [[[],[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],[.,.]],.],.],.] => [[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,[.,.]],.],.],.],.] => [[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[[.,.],.],.],.],.],.] => [[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
For a connected graph $G$ the $k$-th Elser number is
$$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
to ordered tree: left child = left brother
Description
Return an ordered tree of size $n+1$ by the following recursive rule:
- if $x$ is the left child of $y$, $x$ becomes the left brother of $y$,
- if $x$ is the right child of $y$, $x$ becomes the last child of $y$.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!