*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001517

-----------------------------------------------------------------------------
Collection: Permutations

-----------------------------------------------------------------------------
Description: The length of a longest pair of twins in a permutation.

A pair of twins in a permutation is a pair of two disjoint subsequences which are order isomorphic.

-----------------------------------------------------------------------------
References: [1]   Dudek, A., Grytczuk, Jarosław, Ruciński, A. Variations on twins in permutations [[arXiv:2001.05589]]

-----------------------------------------------------------------------------
Code:
from sage.combinat.permutation import to_standard
def statistic(pi):
    n = len(pi)
    S = set(range(n))
    for k in range(n//2, 0, -1):
        for s1 in Subsets(S, k):
            for s2 in Subsets(S.difference(s1), k):
                pi1 = [pi[i] for i in s1]
                pi2 = [pi[i] for i in s2]
                if to_standard(pi1) == to_standard(pi2):
                    return k
    return 0


-----------------------------------------------------------------------------
Statistic values:

[1]           => 0
[1,2]         => 1
[2,1]         => 1
[1,2,3]       => 1
[1,3,2]       => 1
[2,1,3]       => 1
[2,3,1]       => 1
[3,1,2]       => 1
[3,2,1]       => 1
[1,2,3,4]     => 2
[1,2,4,3]     => 2
[1,3,2,4]     => 2
[1,3,4,2]     => 2
[1,4,2,3]     => 2
[1,4,3,2]     => 1
[2,1,3,4]     => 2
[2,1,4,3]     => 2
[2,3,1,4]     => 2
[2,3,4,1]     => 1
[2,4,1,3]     => 2
[2,4,3,1]     => 2
[3,1,2,4]     => 2
[3,1,4,2]     => 2
[3,2,1,4]     => 1
[3,2,4,1]     => 2
[3,4,1,2]     => 2
[3,4,2,1]     => 2
[4,1,2,3]     => 1
[4,1,3,2]     => 2
[4,2,1,3]     => 2
[4,2,3,1]     => 2
[4,3,1,2]     => 2
[4,3,2,1]     => 2
[1,2,3,4,5]   => 2
[1,2,3,5,4]   => 2
[1,2,4,3,5]   => 2
[1,2,4,5,3]   => 2
[1,2,5,3,4]   => 2
[1,2,5,4,3]   => 2
[1,3,2,4,5]   => 2
[1,3,2,5,4]   => 2
[1,3,4,2,5]   => 2
[1,3,4,5,2]   => 2
[1,3,5,2,4]   => 2
[1,3,5,4,2]   => 2
[1,4,2,3,5]   => 2
[1,4,2,5,3]   => 2
[1,4,3,2,5]   => 2
[1,4,3,5,2]   => 2
[1,4,5,2,3]   => 2
[1,4,5,3,2]   => 2
[1,5,2,3,4]   => 2
[1,5,2,4,3]   => 2
[1,5,3,2,4]   => 2
[1,5,3,4,2]   => 2
[1,5,4,2,3]   => 2
[1,5,4,3,2]   => 2
[2,1,3,4,5]   => 2
[2,1,3,5,4]   => 2
[2,1,4,3,5]   => 2
[2,1,4,5,3]   => 2
[2,1,5,3,4]   => 2
[2,1,5,4,3]   => 2
[2,3,1,4,5]   => 2
[2,3,1,5,4]   => 2
[2,3,4,1,5]   => 2
[2,3,4,5,1]   => 2
[2,3,5,1,4]   => 2
[2,3,5,4,1]   => 2
[2,4,1,3,5]   => 2
[2,4,1,5,3]   => 2
[2,4,3,1,5]   => 2
[2,4,3,5,1]   => 2
[2,4,5,1,3]   => 2
[2,4,5,3,1]   => 2
[2,5,1,3,4]   => 2
[2,5,1,4,3]   => 2
[2,5,3,1,4]   => 2
[2,5,3,4,1]   => 2
[2,5,4,1,3]   => 2
[2,5,4,3,1]   => 2
[3,1,2,4,5]   => 2
[3,1,2,5,4]   => 2
[3,1,4,2,5]   => 2
[3,1,4,5,2]   => 2
[3,1,5,2,4]   => 2
[3,1,5,4,2]   => 2
[3,2,1,4,5]   => 2
[3,2,1,5,4]   => 2
[3,2,4,1,5]   => 2
[3,2,4,5,1]   => 2
[3,2,5,1,4]   => 2
[3,2,5,4,1]   => 2
[3,4,1,2,5]   => 2
[3,4,1,5,2]   => 2
[3,4,2,1,5]   => 2
[3,4,2,5,1]   => 2
[3,4,5,1,2]   => 2
[3,4,5,2,1]   => 2
[3,5,1,2,4]   => 2
[3,5,1,4,2]   => 2
[3,5,2,1,4]   => 2
[3,5,2,4,1]   => 2
[3,5,4,1,2]   => 2
[3,5,4,2,1]   => 2
[4,1,2,3,5]   => 2
[4,1,2,5,3]   => 2
[4,1,3,2,5]   => 2
[4,1,3,5,2]   => 2
[4,1,5,2,3]   => 2
[4,1,5,3,2]   => 2
[4,2,1,3,5]   => 2
[4,2,1,5,3]   => 2
[4,2,3,1,5]   => 2
[4,2,3,5,1]   => 2
[4,2,5,1,3]   => 2
[4,2,5,3,1]   => 2
[4,3,1,2,5]   => 2
[4,3,1,5,2]   => 2
[4,3,2,1,5]   => 2
[4,3,2,5,1]   => 2
[4,3,5,1,2]   => 2
[4,3,5,2,1]   => 2
[4,5,1,2,3]   => 2
[4,5,1,3,2]   => 2
[4,5,2,1,3]   => 2
[4,5,2,3,1]   => 2
[4,5,3,1,2]   => 2
[4,5,3,2,1]   => 2
[5,1,2,3,4]   => 2
[5,1,2,4,3]   => 2
[5,1,3,2,4]   => 2
[5,1,3,4,2]   => 2
[5,1,4,2,3]   => 2
[5,1,4,3,2]   => 2
[5,2,1,3,4]   => 2
[5,2,1,4,3]   => 2
[5,2,3,1,4]   => 2
[5,2,3,4,1]   => 2
[5,2,4,1,3]   => 2
[5,2,4,3,1]   => 2
[5,3,1,2,4]   => 2
[5,3,1,4,2]   => 2
[5,3,2,1,4]   => 2
[5,3,2,4,1]   => 2
[5,3,4,1,2]   => 2
[5,3,4,2,1]   => 2
[5,4,1,2,3]   => 2
[5,4,1,3,2]   => 2
[5,4,2,1,3]   => 2
[5,4,2,3,1]   => 2
[5,4,3,1,2]   => 2
[5,4,3,2,1]   => 2
[1,2,3,4,5,6] => 3
[1,2,3,4,6,5] => 3
[1,2,3,5,4,6] => 3
[1,2,3,5,6,4] => 3
[1,2,3,6,4,5] => 3
[1,2,3,6,5,4] => 2
[1,2,4,3,5,6] => 3
[1,2,4,3,6,5] => 3
[1,2,4,5,3,6] => 3
[1,2,4,5,6,3] => 3
[1,2,4,6,3,5] => 3
[1,2,4,6,5,3] => 3
[1,2,5,3,4,6] => 3
[1,2,5,3,6,4] => 3
[1,2,5,4,3,6] => 2
[1,2,5,4,6,3] => 3
[1,2,5,6,3,4] => 3
[1,2,5,6,4,3] => 3
[1,2,6,3,4,5] => 3
[1,2,6,3,5,4] => 3
[1,2,6,4,3,5] => 3
[1,2,6,4,5,3] => 3
[1,2,6,5,3,4] => 3
[1,2,6,5,4,3] => 3
[1,3,2,4,5,6] => 3
[1,3,2,4,6,5] => 3
[1,3,2,5,4,6] => 3
[1,3,2,5,6,4] => 3
[1,3,2,6,4,5] => 3
[1,3,2,6,5,4] => 2
[1,3,4,2,5,6] => 3
[1,3,4,2,6,5] => 3
[1,3,4,5,2,6] => 3
[1,3,4,5,6,2] => 2
[1,3,4,6,2,5] => 3
[1,3,4,6,5,2] => 3
[1,3,5,2,4,6] => 3
[1,3,5,2,6,4] => 3
[1,3,5,4,2,6] => 2
[1,3,5,4,6,2] => 3
[1,3,5,6,2,4] => 3
[1,3,5,6,4,2] => 3
[1,3,6,2,4,5] => 3
[1,3,6,2,5,4] => 3
[1,3,6,4,2,5] => 3
[1,3,6,4,5,2] => 3
[1,3,6,5,2,4] => 3
[1,3,6,5,4,2] => 3
[1,4,2,3,5,6] => 3
[1,4,2,3,6,5] => 3
[1,4,2,5,3,6] => 3
[1,4,2,5,6,3] => 3
[1,4,2,6,3,5] => 3
[1,4,2,6,5,3] => 3
[1,4,3,2,5,6] => 2
[1,4,3,2,6,5] => 3
[1,4,3,5,2,6] => 2
[1,4,3,5,6,2] => 2
[1,4,3,6,2,5] => 3
[1,4,3,6,5,2] => 3
[1,4,5,2,3,6] => 3
[1,4,5,2,6,3] => 3
[1,4,5,3,2,6] => 2
[1,4,5,3,6,2] => 2
[1,4,5,6,2,3] => 3
[1,4,5,6,3,2] => 2
[1,4,6,2,3,5] => 3
[1,4,6,2,5,3] => 2
[1,4,6,3,2,5] => 3
[1,4,6,3,5,2] => 3
[1,4,6,5,2,3] => 2
[1,4,6,5,3,2] => 3
[1,5,2,3,4,6] => 3
[1,5,2,3,6,4] => 3
[1,5,2,4,3,6] => 2
[1,5,2,4,6,3] => 3
[1,5,2,6,3,4] => 3
[1,5,2,6,4,3] => 3
[1,5,3,2,4,6] => 2
[1,5,3,2,6,4] => 3
[1,5,3,4,2,6] => 2
[1,5,3,4,6,2] => 2
[1,5,3,6,2,4] => 3
[1,5,3,6,4,2] => 3
[1,5,4,2,3,6] => 2
[1,5,4,2,6,3] => 3
[1,5,4,3,2,6] => 2
[1,5,4,3,6,2] => 2
[1,5,4,6,2,3] => 2
[1,5,4,6,3,2] => 2
[1,5,6,2,3,4] => 3
[1,5,6,2,4,3] => 2
[1,5,6,3,2,4] => 2
[1,5,6,3,4,2] => 2
[1,5,6,4,2,3] => 2
[1,5,6,4,3,2] => 2
[1,6,2,3,4,5] => 2
[1,6,2,3,5,4] => 3
[1,6,2,4,3,5] => 3
[1,6,2,4,5,3] => 3
[1,6,2,5,3,4] => 3
[1,6,2,5,4,3] => 3
[1,6,3,2,4,5] => 2
[1,6,3,2,5,4] => 3
[1,6,3,4,2,5] => 2
[1,6,3,4,5,2] => 2
[1,6,3,5,2,4] => 3
[1,6,3,5,4,2] => 3
[1,6,4,2,3,5] => 2
[1,6,4,2,5,3] => 3
[1,6,4,3,2,5] => 2
[1,6,4,3,5,2] => 2
[1,6,4,5,2,3] => 2
[1,6,4,5,3,2] => 2
[1,6,5,2,3,4] => 2
[1,6,5,2,4,3] => 3
[1,6,5,3,2,4] => 2
[1,6,5,3,4,2] => 2
[1,6,5,4,2,3] => 2
[1,6,5,4,3,2] => 2
[2,1,3,4,5,6] => 3
[2,1,3,4,6,5] => 3
[2,1,3,5,4,6] => 3
[2,1,3,5,6,4] => 3
[2,1,3,6,4,5] => 3
[2,1,3,6,5,4] => 2
[2,1,4,3,5,6] => 3
[2,1,4,3,6,5] => 3
[2,1,4,5,3,6] => 3
[2,1,4,5,6,3] => 2
[2,1,4,6,3,5] => 3
[2,1,4,6,5,3] => 3
[2,1,5,3,4,6] => 3
[2,1,5,3,6,4] => 3
[2,1,5,4,3,6] => 3
[2,1,5,4,6,3] => 3
[2,1,5,6,3,4] => 3
[2,1,5,6,4,3] => 3
[2,1,6,3,4,5] => 2
[2,1,6,3,5,4] => 3
[2,1,6,4,3,5] => 3
[2,1,6,4,5,3] => 3
[2,1,6,5,3,4] => 3
[2,1,6,5,4,3] => 3
[2,3,1,4,5,6] => 3
[2,3,1,4,6,5] => 3
[2,3,1,5,4,6] => 3
[2,3,1,5,6,4] => 3
[2,3,1,6,4,5] => 3
[2,3,1,6,5,4] => 2
[2,3,4,1,5,6] => 3
[2,3,4,1,6,5] => 2
[2,3,4,5,1,6] => 2
[2,3,4,5,6,1] => 2
[2,3,4,6,1,5] => 2
[2,3,4,6,5,1] => 2
[2,3,5,1,4,6] => 3
[2,3,5,1,6,4] => 3
[2,3,5,4,1,6] => 2
[2,3,5,4,6,1] => 2
[2,3,5,6,1,4] => 3
[2,3,5,6,4,1] => 3
[2,3,6,1,4,5] => 3
[2,3,6,1,5,4] => 2
[2,3,6,4,1,5] => 2
[2,3,6,4,5,1] => 2
[2,3,6,5,1,4] => 2
[2,3,6,5,4,1] => 2
[2,4,1,3,5,6] => 3
[2,4,1,3,6,5] => 3
[2,4,1,5,3,6] => 3
[2,4,1,5,6,3] => 3
[2,4,1,6,3,5] => 3
[2,4,1,6,5,3] => 3
[2,4,3,1,5,6] => 3
[2,4,3,1,6,5] => 3
[2,4,3,5,1,6] => 3
[2,4,3,5,6,1] => 2
[2,4,3,6,1,5] => 3
[2,4,3,6,5,1] => 2
[2,4,5,1,3,6] => 3
[2,4,5,1,6,3] => 3
[2,4,5,3,1,6] => 2
[2,4,5,3,6,1] => 3
[2,4,5,6,1,3] => 3
[2,4,5,6,3,1] => 3
[2,4,6,1,3,5] => 3
[2,4,6,1,5,3] => 3
[2,4,6,3,1,5] => 2
[2,4,6,3,5,1] => 3
[2,4,6,5,1,3] => 3
[2,4,6,5,3,1] => 3
[2,5,1,3,4,6] => 3
[2,5,1,3,6,4] => 3
[2,5,1,4,3,6] => 3
[2,5,1,4,6,3] => 3
[2,5,1,6,3,4] => 3
[2,5,1,6,4,3] => 3
[2,5,3,1,4,6] => 3
[2,5,3,1,6,4] => 3
[2,5,3,4,1,6] => 2
[2,5,3,4,6,1] => 2
[2,5,3,6,1,4] => 3
[2,5,3,6,4,1] => 3
[2,5,4,1,3,6] => 3
[2,5,4,1,6,3] => 3
[2,5,4,3,1,6] => 2
[2,5,4,3,6,1] => 2
[2,5,4,6,1,3] => 3
[2,5,4,6,3,1] => 3
[2,5,6,1,3,4] => 3
[2,5,6,1,4,3] => 2
[2,5,6,3,1,4] => 3
[2,5,6,3,4,1] => 3
[2,5,6,4,1,3] => 3
[2,5,6,4,3,1] => 3
[2,6,1,3,4,5] => 2
[2,6,1,3,5,4] => 3
[2,6,1,4,3,5] => 3
[2,6,1,4,5,3] => 3
[2,6,1,5,3,4] => 3
[2,6,1,5,4,3] => 3
[2,6,3,1,4,5] => 2
[2,6,3,1,5,4] => 3
[2,6,3,4,1,5] => 2
[2,6,3,4,5,1] => 2
[2,6,3,5,1,4] => 2
[2,6,3,5,4,1] => 2
[2,6,4,1,3,5] => 2
[2,6,4,1,5,3] => 3
[2,6,4,3,1,5] => 2
[2,6,4,3,5,1] => 2
[2,6,4,5,1,3] => 3
[2,6,4,5,3,1] => 3
[2,6,5,1,3,4] => 2
[2,6,5,1,4,3] => 3
[2,6,5,3,1,4] => 2
[2,6,5,3,4,1] => 2
[2,6,5,4,1,3] => 2
[2,6,5,4,3,1] => 2
[3,1,2,4,5,6] => 3
[3,1,2,4,6,5] => 3
[3,1,2,5,4,6] => 3
[3,1,2,5,6,4] => 3
[3,1,2,6,4,5] => 3
[3,1,2,6,5,4] => 2
[3,1,4,2,5,6] => 3
[3,1,4,2,6,5] => 3
[3,1,4,5,2,6] => 3
[3,1,4,5,6,2] => 2
[3,1,4,6,2,5] => 3
[3,1,4,6,5,2] => 3
[3,1,5,2,4,6] => 3
[3,1,5,2,6,4] => 3
[3,1,5,4,2,6] => 3
[3,1,5,4,6,2] => 3
[3,1,5,6,2,4] => 3
[3,1,5,6,4,2] => 3
[3,1,6,2,4,5] => 3
[3,1,6,2,5,4] => 3
[3,1,6,4,2,5] => 3
[3,1,6,4,5,2] => 3
[3,1,6,5,2,4] => 3
[3,1,6,5,4,2] => 3
[3,2,1,4,5,6] => 2
[3,2,1,4,6,5] => 2
[3,2,1,5,4,6] => 2
[3,2,1,5,6,4] => 2
[3,2,1,6,4,5] => 2
[3,2,1,6,5,4] => 3
[3,2,4,1,5,6] => 3
[3,2,4,1,6,5] => 3
[3,2,4,5,1,6] => 3
[3,2,4,5,6,1] => 2
[3,2,4,6,1,5] => 3
[3,2,4,6,5,1] => 2
[3,2,5,1,4,6] => 3
[3,2,5,1,6,4] => 3
[3,2,5,4,1,6] => 3
[3,2,5,4,6,1] => 2
[3,2,5,6,1,4] => 2
[3,2,5,6,4,1] => 2
[3,2,6,1,4,5] => 2
[3,2,6,1,5,4] => 3
[3,2,6,4,1,5] => 3
[3,2,6,4,5,1] => 2
[3,2,6,5,1,4] => 3
[3,2,6,5,4,1] => 3
[3,4,1,2,5,6] => 3
[3,4,1,2,6,5] => 3
[3,4,1,5,2,6] => 3
[3,4,1,5,6,2] => 3
[3,4,1,6,2,5] => 3
[3,4,1,6,5,2] => 2
[3,4,2,1,5,6] => 3
[3,4,2,1,6,5] => 3
[3,4,2,5,1,6] => 3
[3,4,2,5,6,1] => 3
[3,4,2,6,1,5] => 3
[3,4,2,6,5,1] => 2
[3,4,5,1,2,6] => 3
[3,4,5,1,6,2] => 3
[3,4,5,2,1,6] => 2
[3,4,5,2,6,1] => 3
[3,4,5,6,1,2] => 3
[3,4,5,6,2,1] => 3
[3,4,6,1,2,5] => 3
[3,4,6,1,5,2] => 3
[3,4,6,2,1,5] => 2
[3,4,6,2,5,1] => 3
[3,4,6,5,1,2] => 3
[3,4,6,5,2,1] => 3
[3,5,1,2,4,6] => 3
[3,5,1,2,6,4] => 3
[3,5,1,4,2,6] => 3
[3,5,1,4,6,2] => 3
[3,5,1,6,2,4] => 3
[3,5,1,6,4,2] => 3
[3,5,2,1,4,6] => 3
[3,5,2,1,6,4] => 3
[3,5,2,4,1,6] => 3
[3,5,2,4,6,1] => 3
[3,5,2,6,1,4] => 3
[3,5,2,6,4,1] => 2
[3,5,4,1,2,6] => 2
[3,5,4,1,6,2] => 3
[3,5,4,2,1,6] => 2
[3,5,4,2,6,1] => 3
[3,5,4,6,1,2] => 3
[3,5,4,6,2,1] => 3
[3,5,6,1,2,4] => 3
[3,5,6,1,4,2] => 3
[3,5,6,2,1,4] => 2
[3,5,6,2,4,1] => 3
[3,5,6,4,1,2] => 3
[3,5,6,4,2,1] => 3
[3,6,1,2,4,5] => 3
[3,6,1,2,5,4] => 2
[3,6,1,4,2,5] => 3
[3,6,1,4,5,2] => 3
[3,6,1,5,2,4] => 3
[3,6,1,5,4,2] => 3
[3,6,2,1,4,5] => 2
[3,6,2,1,5,4] => 3
[3,6,2,4,1,5] => 2
[3,6,2,4,5,1] => 3
[3,6,2,5,1,4] => 3
[3,6,2,5,4,1] => 3
[3,6,4,1,2,5] => 3
[3,6,4,1,5,2] => 3
[3,6,4,2,1,5] => 2
[3,6,4,2,5,1] => 3
[3,6,4,5,1,2] => 3
[3,6,4,5,2,1] => 3
[3,6,5,1,2,4] => 2
[3,6,5,1,4,2] => 3
[3,6,5,2,1,4] => 3
[3,6,5,2,4,1] => 3
[3,6,5,4,1,2] => 2
[3,6,5,4,2,1] => 3
[4,1,2,3,5,6] => 3
[4,1,2,3,6,5] => 2
[4,1,2,5,3,6] => 3
[4,1,2,5,6,3] => 3
[4,1,2,6,3,5] => 3
[4,1,2,6,5,3] => 2
[4,1,3,2,5,6] => 3
[4,1,3,2,6,5] => 3
[4,1,3,5,2,6] => 3
[4,1,3,5,6,2] => 2
[4,1,3,6,2,5] => 3
[4,1,3,6,5,2] => 3
[4,1,5,2,3,6] => 3
[4,1,5,2,6,3] => 3
[4,1,5,3,2,6] => 3
[4,1,5,3,6,2] => 2
[4,1,5,6,2,3] => 3
[4,1,5,6,3,2] => 2
[4,1,6,2,3,5] => 3
[4,1,6,2,5,3] => 3
[4,1,6,3,2,5] => 3
[4,1,6,3,5,2] => 3
[4,1,6,5,2,3] => 2
[4,1,6,5,3,2] => 3
[4,2,1,3,5,6] => 3
[4,2,1,3,6,5] => 3
[4,2,1,5,3,6] => 3
[4,2,1,5,6,3] => 2
[4,2,1,6,3,5] => 3
[4,2,1,6,5,3] => 3
[4,2,3,1,5,6] => 3
[4,2,3,1,6,5] => 3
[4,2,3,5,1,6] => 3
[4,2,3,5,6,1] => 2
[4,2,3,6,1,5] => 3
[4,2,3,6,5,1] => 2
[4,2,5,1,3,6] => 2
[4,2,5,1,6,3] => 3
[4,2,5,3,1,6] => 3
[4,2,5,3,6,1] => 3
[4,2,5,6,1,3] => 3
[4,2,5,6,3,1] => 3
[4,2,6,1,3,5] => 3
[4,2,6,1,5,3] => 3
[4,2,6,3,1,5] => 3
[4,2,6,3,5,1] => 3
[4,2,6,5,1,3] => 3
[4,2,6,5,3,1] => 3
[4,3,1,2,5,6] => 3
[4,3,1,2,6,5] => 3
[4,3,1,5,2,6] => 3
[4,3,1,5,6,2] => 2
[4,3,1,6,2,5] => 3
[4,3,1,6,5,2] => 3
[4,3,2,1,5,6] => 3
[4,3,2,1,6,5] => 3
[4,3,2,5,1,6] => 3
[4,3,2,5,6,1] => 2
[4,3,2,6,1,5] => 3
[4,3,2,6,5,1] => 3
[4,3,5,1,2,6] => 2
[4,3,5,1,6,2] => 3
[4,3,5,2,1,6] => 3
[4,3,5,2,6,1] => 3
[4,3,5,6,1,2] => 3
[4,3,5,6,2,1] => 3
[4,3,6,1,2,5] => 2
[4,3,6,1,5,2] => 3
[4,3,6,2,1,5] => 3
[4,3,6,2,5,1] => 3
[4,3,6,5,1,2] => 3
[4,3,6,5,2,1] => 3
[4,5,1,2,3,6] => 3
[4,5,1,2,6,3] => 3
[4,5,1,3,2,6] => 2
[4,5,1,3,6,2] => 3
[4,5,1,6,2,3] => 3
[4,5,1,6,3,2] => 2
[4,5,2,1,3,6] => 2
[4,5,2,1,6,3] => 2
[4,5,2,3,1,6] => 2
[4,5,2,3,6,1] => 3
[4,5,2,6,1,3] => 3
[4,5,2,6,3,1] => 3
[4,5,3,1,2,6] => 2
[4,5,3,1,6,2] => 3
[4,5,3,2,1,6] => 2
[4,5,3,2,6,1] => 3
[4,5,3,6,1,2] => 3
[4,5,3,6,2,1] => 3
[4,5,6,1,2,3] => 3
[4,5,6,1,3,2] => 2
[4,5,6,2,1,3] => 2
[4,5,6,2,3,1] => 2
[4,5,6,3,1,2] => 2
[4,5,6,3,2,1] => 2
[4,6,1,2,3,5] => 3
[4,6,1,2,5,3] => 3
[4,6,1,3,2,5] => 3
[4,6,1,3,5,2] => 3
[4,6,1,5,2,3] => 3
[4,6,1,5,3,2] => 3
[4,6,2,1,3,5] => 3
[4,6,2,1,5,3] => 3
[4,6,2,3,1,5] => 3
[4,6,2,3,5,1] => 3
[4,6,2,5,1,3] => 3
[4,6,2,5,3,1] => 3
[4,6,3,1,2,5] => 3
[4,6,3,1,5,2] => 3
[4,6,3,2,1,5] => 2
[4,6,3,2,5,1] => 3
[4,6,3,5,1,2] => 3
[4,6,3,5,2,1] => 3
[4,6,5,1,2,3] => 2
[4,6,5,1,3,2] => 3
[4,6,5,2,1,3] => 3
[4,6,5,2,3,1] => 3
[4,6,5,3,1,2] => 3
[4,6,5,3,2,1] => 3
[5,1,2,3,4,6] => 2
[5,1,2,3,6,4] => 2
[5,1,2,4,3,6] => 2
[5,1,2,4,6,3] => 2
[5,1,2,6,3,4] => 3
[5,1,2,6,4,3] => 2
[5,1,3,2,4,6] => 3
[5,1,3,2,6,4] => 3
[5,1,3,4,2,6] => 2
[5,1,3,4,6,2] => 2
[5,1,3,6,2,4] => 3
[5,1,3,6,4,2] => 2
[5,1,4,2,3,6] => 2
[5,1,4,2,6,3] => 2
[5,1,4,3,2,6] => 2
[5,1,4,3,6,2] => 2
[5,1,4,6,2,3] => 3
[5,1,4,6,3,2] => 2
[5,1,6,2,3,4] => 3
[5,1,6,2,4,3] => 3
[5,1,6,3,2,4] => 3
[5,1,6,3,4,2] => 3
[5,1,6,4,2,3] => 3
[5,1,6,4,3,2] => 2
[5,2,1,3,4,6] => 3
[5,2,1,3,6,4] => 3
[5,2,1,4,3,6] => 3
[5,2,1,4,6,3] => 3
[5,2,1,6,3,4] => 2
[5,2,1,6,4,3] => 3
[5,2,3,1,4,6] => 3
[5,2,3,1,6,4] => 3
[5,2,3,4,1,6] => 2
[5,2,3,4,6,1] => 2
[5,2,3,6,1,4] => 3
[5,2,3,6,4,1] => 3
[5,2,4,1,3,6] => 3
[5,2,4,1,6,3] => 3
[5,2,4,3,1,6] => 2
[5,2,4,3,6,1] => 2
[5,2,4,6,1,3] => 3
[5,2,4,6,3,1] => 3
[5,2,6,1,3,4] => 3
[5,2,6,1,4,3] => 3
[5,2,6,3,1,4] => 3
[5,2,6,3,4,1] => 3
[5,2,6,4,1,3] => 3
[5,2,6,4,3,1] => 3
[5,3,1,2,4,6] => 3
[5,3,1,2,6,4] => 3
[5,3,1,4,2,6] => 3
[5,3,1,4,6,2] => 2
[5,3,1,6,2,4] => 3
[5,3,1,6,4,2] => 3
[5,3,2,1,4,6] => 3
[5,3,2,1,6,4] => 3
[5,3,2,4,1,6] => 3
[5,3,2,4,6,1] => 2
[5,3,2,6,1,4] => 3
[5,3,2,6,4,1] => 3
[5,3,4,1,2,6] => 2
[5,3,4,1,6,2] => 3
[5,3,4,2,1,6] => 2
[5,3,4,2,6,1] => 3
[5,3,4,6,1,2] => 3
[5,3,4,6,2,1] => 3
[5,3,6,1,2,4] => 3
[5,3,6,1,4,2] => 3
[5,3,6,2,1,4] => 3
[5,3,6,2,4,1] => 3
[5,3,6,4,1,2] => 3
[5,3,6,4,2,1] => 3
[5,4,1,2,3,6] => 2
[5,4,1,2,6,3] => 2
[5,4,1,3,2,6] => 2
[5,4,1,3,6,2] => 2
[5,4,1,6,2,3] => 2
[5,4,1,6,3,2] => 3
[5,4,2,1,3,6] => 3
[5,4,2,1,6,3] => 3
[5,4,2,3,1,6] => 2
[5,4,2,3,6,1] => 2
[5,4,2,6,1,3] => 3
[5,4,2,6,3,1] => 3
[5,4,3,1,2,6] => 2
[5,4,3,1,6,2] => 2
[5,4,3,2,1,6] => 2
[5,4,3,2,6,1] => 2
[5,4,3,6,1,2] => 2
[5,4,3,6,2,1] => 3
[5,4,6,1,2,3] => 2
[5,4,6,1,3,2] => 3
[5,4,6,2,1,3] => 3
[5,4,6,2,3,1] => 3
[5,4,6,3,1,2] => 3
[5,4,6,3,2,1] => 3
[5,6,1,2,3,4] => 3
[5,6,1,2,4,3] => 3
[5,6,1,3,2,4] => 3
[5,6,1,3,4,2] => 3
[5,6,1,4,2,3] => 3
[5,6,1,4,3,2] => 2
[5,6,2,1,3,4] => 3
[5,6,2,1,4,3] => 3
[5,6,2,3,1,4] => 3
[5,6,2,3,4,1] => 3
[5,6,2,4,1,3] => 3
[5,6,2,4,3,1] => 3
[5,6,3,1,2,4] => 3
[5,6,3,1,4,2] => 3
[5,6,3,2,1,4] => 2
[5,6,3,2,4,1] => 3
[5,6,3,4,1,2] => 3
[5,6,3,4,2,1] => 3
[5,6,4,1,2,3] => 2
[5,6,4,1,3,2] => 3
[5,6,4,2,1,3] => 3
[5,6,4,2,3,1] => 3
[5,6,4,3,1,2] => 3
[5,6,4,3,2,1] => 3
[6,1,2,3,4,5] => 2
[6,1,2,3,5,4] => 2
[6,1,2,4,3,5] => 2
[6,1,2,4,5,3] => 2
[6,1,2,5,3,4] => 3
[6,1,2,5,4,3] => 2
[6,1,3,2,4,5] => 2
[6,1,3,2,5,4] => 2
[6,1,3,4,2,5] => 2
[6,1,3,4,5,2] => 2
[6,1,3,5,2,4] => 3
[6,1,3,5,4,2] => 2
[6,1,4,2,3,5] => 3
[6,1,4,2,5,3] => 3
[6,1,4,3,2,5] => 2
[6,1,4,3,5,2] => 2
[6,1,4,5,2,3] => 3
[6,1,4,5,3,2] => 2
[6,1,5,2,3,4] => 3
[6,1,5,2,4,3] => 3
[6,1,5,3,2,4] => 3
[6,1,5,3,4,2] => 3
[6,1,5,4,2,3] => 3
[6,1,5,4,3,2] => 2
[6,2,1,3,4,5] => 2
[6,2,1,3,5,4] => 2
[6,2,1,4,3,5] => 2
[6,2,1,4,5,3] => 2
[6,2,1,5,3,4] => 2
[6,2,1,5,4,3] => 3
[6,2,3,1,4,5] => 2
[6,2,3,1,5,4] => 2
[6,2,3,4,1,5] => 2
[6,2,3,4,5,1] => 2
[6,2,3,5,1,4] => 3
[6,2,3,5,4,1] => 2
[6,2,4,1,3,5] => 3
[6,2,4,1,5,3] => 3
[6,2,4,3,1,5] => 2
[6,2,4,3,5,1] => 2
[6,2,4,5,1,3] => 3
[6,2,4,5,3,1] => 2
[6,2,5,1,3,4] => 3
[6,2,5,1,4,3] => 3
[6,2,5,3,1,4] => 3
[6,2,5,3,4,1] => 2
[6,2,5,4,1,3] => 3
[6,2,5,4,3,1] => 3
[6,3,1,2,4,5] => 3
[6,3,1,2,5,4] => 2
[6,3,1,4,2,5] => 3
[6,3,1,4,5,2] => 3
[6,3,1,5,2,4] => 2
[6,3,1,5,4,2] => 3
[6,3,2,1,4,5] => 2
[6,3,2,1,5,4] => 3
[6,3,2,4,1,5] => 2
[6,3,2,4,5,1] => 2
[6,3,2,5,1,4] => 3
[6,3,2,5,4,1] => 3
[6,3,4,1,2,5] => 3
[6,3,4,1,5,2] => 3
[6,3,4,2,1,5] => 2
[6,3,4,2,5,1] => 2
[6,3,4,5,1,2] => 3
[6,3,4,5,2,1] => 2
[6,3,5,1,2,4] => 3
[6,3,5,1,4,2] => 3
[6,3,5,2,1,4] => 3
[6,3,5,2,4,1] => 3
[6,3,5,4,1,2] => 3
[6,3,5,4,2,1] => 3
[6,4,1,2,3,5] => 3
[6,4,1,2,5,3] => 3
[6,4,1,3,2,5] => 3
[6,4,1,3,5,2] => 3
[6,4,1,5,2,3] => 3
[6,4,1,5,3,2] => 3
[6,4,2,1,3,5] => 3
[6,4,2,1,5,3] => 3
[6,4,2,3,1,5] => 3
[6,4,2,3,5,1] => 2
[6,4,2,5,1,3] => 3
[6,4,2,5,3,1] => 3
[6,4,3,1,2,5] => 3
[6,4,3,1,5,2] => 3
[6,4,3,2,1,5] => 2
[6,4,3,2,5,1] => 3
[6,4,3,5,1,2] => 3
[6,4,3,5,2,1] => 3
[6,4,5,1,2,3] => 2
[6,4,5,1,3,2] => 3
[6,4,5,2,1,3] => 3
[6,4,5,2,3,1] => 3
[6,4,5,3,1,2] => 3
[6,4,5,3,2,1] => 3
[6,5,1,2,3,4] => 3
[6,5,1,2,4,3] => 3
[6,5,1,3,2,4] => 3
[6,5,1,3,4,2] => 3
[6,5,1,4,2,3] => 3
[6,5,1,4,3,2] => 3
[6,5,2,1,3,4] => 3
[6,5,2,1,4,3] => 3
[6,5,2,3,1,4] => 3
[6,5,2,3,4,1] => 2
[6,5,2,4,1,3] => 3
[6,5,2,4,3,1] => 3
[6,5,3,1,2,4] => 3
[6,5,3,1,4,2] => 3
[6,5,3,2,1,4] => 3
[6,5,3,2,4,1] => 3
[6,5,3,4,1,2] => 3
[6,5,3,4,2,1] => 3
[6,5,4,1,2,3] => 2
[6,5,4,1,3,2] => 3
[6,5,4,2,1,3] => 3
[6,5,4,2,3,1] => 3
[6,5,4,3,1,2] => 3
[6,5,4,3,2,1] => 3

-----------------------------------------------------------------------------
Created: Jan 17, 2020 at 09:24 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Jan 17, 2020 at 09:24 by Martin Rubey