Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001514: Dyck paths ⟶ ℤ
Values
([(0,1)],2) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(1,2)],3) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(0,2),(1,2)],3) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(2,3)],4) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(1,3),(2,3)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(0,3),(1,2)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(1,2),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 4
([(3,4)],5) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(2,4),(3,4)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(1,4),(2,3)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(2,3),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 4
([(4,5)],6) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(3,5),(4,5)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(2,5),(3,4)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(3,4),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 4
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 3
([(5,6)],7) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(4,6),(5,6)],7) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(3,6),(4,5)],7) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(4,5),(4,6),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 3
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 4
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 4
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 4
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 3
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 4
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
>>> Load all 149 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!