Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001498: Dyck paths ⟶ ℤ
Values
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 0
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 0
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 0
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 0
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 0
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => 0
[1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => 0
[1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,1,0,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,1,0,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
[1,1,0,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => 0
>>> Load all 248 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of d1 north steps, followed by d1 east steps, followed by d2 north steps and d2 east steps, and so on, where di is the number of i−1's within the sequence a.
For example, given a=(0,1,2,2,2,3,1,2), we build the path
NE NNEE NNNNEEEE NE. - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the kth and the (k+1)st peak must be filled by dk east steps and dk+1 north steps. In the above example, the rectangle between the second and the third peak must be filled by 2 east and 4 north steps, the 2 being the number of 1's in a, and 4 being the number of 2's. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a k−1 or k, respectively. So to fill the 2×4 rectangle, we look for 1's and 2's in the sequence and see 122212, so this rectangle gets filled with ENNNEN.
The complete path we obtain in thus
NENNENNNENEEENEE.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!