Identifier
-
Mp00027:
Dyck paths
—to partition⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤ
Values
[1,0,1,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,0,1,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,0,1,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,0,1,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,1,0,1,0,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => 1010 => 0
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Map
to partition
Description
The cut-out partition of a Dyck path.
The partition $\lambda$ associated to a Dyck path is defined to be the complementary partition inside the staircase partition $(n-1,\ldots,2,1)$ when cutting out $D$ considered as a path from $(0,0)$ to $(n,n)$.
In other words, $\lambda_{i}$ is the number of down-steps before the $(n+1-i)$-th up-step of $D$.
This map is a bijection between Dyck paths of size $n$ and partitions inside the staircase partition $(n-1,\ldots,2,1)$.
The partition $\lambda$ associated to a Dyck path is defined to be the complementary partition inside the staircase partition $(n-1,\ldots,2,1)$ when cutting out $D$ considered as a path from $(0,0)$ to $(n,n)$.
In other words, $\lambda_{i}$ is the number of down-steps before the $(n+1-i)$-th up-step of $D$.
This map is a bijection between Dyck paths of size $n$ and partitions inside the staircase partition $(n-1,\ldots,2,1)$.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
to binary word
Description
Return the Dyck word as binary word.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!