*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001491

-----------------------------------------------------------------------------
Collection: Binary words

-----------------------------------------------------------------------------
Description: The number of indecomposable projective-injective modules in the algebra corresponding to a subset.

Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

1    => 1
01   => 1
10   => 1
11   => 2
001  => 1
010  => 1
011  => 1
100  => 1
101  => 2
110  => 1
111  => 3
0001 => 1
0010 => 1
0011 => 1
0100 => 1
0101 => 0
0110 => 2
0111 => 2
1000 => 1
1001 => 2
1010 => 0
1011 => 2
1100 => 1
1101 => 2
1110 => 2
1111 => 4

-----------------------------------------------------------------------------
Created: Nov 09, 2019 at 14:36 by Rene  Marczinzik

-----------------------------------------------------------------------------
Last Updated: Nov 09, 2019 at 15:11 by Rene  Marczinzik