*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001490

-----------------------------------------------------------------------------
Collection: Skew partitions

-----------------------------------------------------------------------------
Description: The number of connected components of a skew partition.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(la):
    return len(la.cell_poset().connected_components())

-----------------------------------------------------------------------------
Statistic values:

[[1],[]]                => 1
[[2],[]]                => 1
[[1,1],[]]              => 1
[[2,1],[1]]             => 2
[[3],[]]                => 1
[[2,1],[]]              => 1
[[3,1],[1]]             => 2
[[2,2],[1]]             => 1
[[3,2],[2]]             => 2
[[1,1,1],[]]            => 1
[[2,2,1],[1,1]]         => 2
[[2,1,1],[1]]           => 2
[[3,2,1],[2,1]]         => 3
[[4],[]]                => 1
[[3,1],[]]              => 1
[[4,1],[1]]             => 2
[[2,2],[]]              => 1
[[3,2],[1]]             => 1
[[4,2],[2]]             => 2
[[2,1,1],[]]            => 1
[[3,2,1],[1,1]]         => 2
[[3,1,1],[1]]           => 2
[[4,2,1],[2,1]]         => 3
[[3,3],[2]]             => 1
[[4,3],[3]]             => 2
[[2,2,1],[1]]           => 1
[[3,3,1],[2,1]]         => 2
[[3,2,1],[2]]           => 2
[[4,3,1],[3,1]]         => 3
[[2,2,2],[1,1]]         => 1
[[3,3,2],[2,2]]         => 2
[[3,2,2],[2,1]]         => 2
[[4,3,2],[3,2]]         => 3
[[1,1,1,1],[]]          => 1
[[2,2,2,1],[1,1,1]]     => 2
[[2,2,1,1],[1,1]]       => 2
[[3,3,2,1],[2,2,1]]     => 3
[[2,1,1,1],[1]]         => 2
[[3,2,2,1],[2,1,1]]     => 3
[[3,2,1,1],[2,1]]       => 3
[[4,3,2,1],[3,2,1]]     => 4
[[5],[]]                => 1
[[4,1],[]]              => 1
[[5,1],[1]]             => 2
[[3,2],[]]              => 1
[[4,2],[1]]             => 1
[[5,2],[2]]             => 2
[[3,1,1],[]]            => 1
[[4,2,1],[1,1]]         => 2
[[4,1,1],[1]]           => 2
[[5,2,1],[2,1]]         => 3
[[3,3],[1]]             => 1
[[4,3],[2]]             => 1
[[5,3],[3]]             => 2
[[2,2,1],[]]            => 1
[[3,3,1],[1,1]]         => 2
[[3,2,1],[1]]           => 1
[[4,3,1],[2,1]]         => 2
[[4,2,1],[2]]           => 2
[[5,3,1],[3,1]]         => 3
[[3,2,2],[1,1]]         => 1
[[4,3,2],[2,2]]         => 2
[[4,2,2],[2,1]]         => 2
[[5,3,2],[3,2]]         => 3
[[2,1,1,1],[]]          => 1
[[3,2,2,1],[1,1,1]]     => 2
[[3,2,1,1],[1,1]]       => 2
[[4,3,2,1],[2,2,1]]     => 3
[[3,1,1,1],[1]]         => 2
[[4,2,2,1],[2,1,1]]     => 3
[[4,2,1,1],[2,1]]       => 3
[[5,3,2,1],[3,2,1]]     => 4
[[4,4],[3]]             => 1
[[5,4],[4]]             => 2
[[3,3,1],[2]]           => 1
[[4,4,1],[3,1]]         => 2
[[4,3,1],[3]]           => 2
[[5,4,1],[4,1]]         => 3
[[2,2,2],[1]]           => 1
[[3,3,2],[2,1]]         => 1
[[4,4,2],[3,2]]         => 2
[[3,2,2],[2]]           => 2
[[4,3,2],[3,1]]         => 2
[[5,4,2],[4,2]]         => 3
[[2,2,1,1],[1]]         => 1
[[3,3,2,1],[2,1,1]]     => 2
[[3,3,1,1],[2,1]]       => 2
[[4,4,2,1],[3,2,1]]     => 3
[[3,2,1,1],[2]]         => 2
[[4,3,2,1],[3,1,1]]     => 3
[[4,3,1,1],[3,1]]       => 3
[[5,4,2,1],[4,2,1]]     => 4
[[3,3,3],[2,2]]         => 1
[[4,4,3],[3,3]]         => 2
[[4,3,3],[3,2]]         => 2
[[5,4,3],[4,3]]         => 3
[[2,2,2,1],[1,1]]       => 1
[[3,3,3,1],[2,2,1]]     => 2
[[3,3,2,1],[2,2]]       => 2
[[4,4,3,1],[3,3,1]]     => 3
[[3,2,2,1],[2,1]]       => 2
[[4,3,3,1],[3,2,1]]     => 3
[[4,3,2,1],[3,2]]       => 3
[[5,4,3,1],[4,3,1]]     => 4
[[2,2,2,2],[1,1,1]]     => 1
[[3,3,3,2],[2,2,2]]     => 2
[[3,3,2,2],[2,2,1]]     => 2
[[4,4,3,2],[3,3,2]]     => 3
[[3,2,2,2],[2,1,1]]     => 2
[[4,3,3,2],[3,2,2]]     => 3
[[4,3,2,2],[3,2,1]]     => 3
[[5,4,3,2],[4,3,2]]     => 4
[[1,1,1,1,1],[]]        => 1
[[2,2,2,2,1],[1,1,1,1]] => 2
[[2,2,2,1,1],[1,1,1]]   => 2
[[3,3,3,2,1],[2,2,2,1]] => 3
[[2,2,1,1,1],[1,1]]     => 2
[[3,3,2,2,1],[2,2,1,1]] => 3
[[3,3,2,1,1],[2,2,1]]   => 3
[[4,4,3,2,1],[3,3,2,1]] => 4
[[2,1,1,1,1],[1]]       => 2
[[3,2,2,2,1],[2,1,1,1]] => 3
[[3,2,2,1,1],[2,1,1]]   => 3
[[4,3,3,2,1],[3,2,2,1]] => 4
[[3,2,1,1,1],[2,1]]     => 3
[[4,3,2,2,1],[3,2,1,1]] => 4
[[4,3,2,1,1],[3,2,1]]   => 4
[[5,4,3,2,1],[4,3,2,1]] => 5

-----------------------------------------------------------------------------
Created: Oct 30, 2019 at 12:59 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Oct 30, 2019 at 12:59 by Martin Rubey