*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001444

-----------------------------------------------------------------------------
Collection: Perfect matchings

-----------------------------------------------------------------------------
Description: The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching.

Two pairs $(a,b)$ and $(c,d)$ (with $a < b$ and $c < d$) in a perfect matching cross if and only if $a < c < b < d$ or $c < a < d < b$.  Define a skew symmetric matrix $M$ whose rows and columns are indexed by the pairs of the matching, with
$$
M_{(a,b),(c,d)} =
\begin{cases}
1 &\text{if \(a < c < b < d\)}\\
-1 &\text{if \(c < a < d < b\)}\\
0 &\text{otherwise}
\end{cases}
$$

The rank of this matrix is always even.  The present statistic is half of the matrix' rank.

-----------------------------------------------------------------------------
References: [1]   Helfgott, H. A. Permutations, skew-symmetric forms and degeneracy [[MathOverflow:336232]]

-----------------------------------------------------------------------------
Code:
def statistic(matching):
    def is_crossing(A, B):
        a, b = A
        c, d = B
        if a < c < b < d:
            return 1
        if c < a < d < b:
            return -1
        return 0
    arcs = sorted(matching.arcs())    
    m = matrix([[is_crossing(A, B) for A in arcs] for B in arcs])
    return m.rank()//2


-----------------------------------------------------------------------------
Statistic values:

[(1,2)]                          => 0
[(1,2),(3,4)]                    => 0
[(1,3),(2,4)]                    => 1
[(1,4),(2,3)]                    => 0
[(1,2),(3,4),(5,6)]              => 0
[(1,3),(2,4),(5,6)]              => 1
[(1,4),(2,3),(5,6)]              => 0
[(1,5),(2,3),(4,6)]              => 1
[(1,6),(2,3),(4,5)]              => 0
[(1,6),(2,4),(3,5)]              => 1
[(1,5),(2,4),(3,6)]              => 1
[(1,4),(2,5),(3,6)]              => 1
[(1,3),(2,5),(4,6)]              => 1
[(1,2),(3,5),(4,6)]              => 1
[(1,2),(3,6),(4,5)]              => 0
[(1,3),(2,6),(4,5)]              => 1
[(1,4),(2,6),(3,5)]              => 1
[(1,5),(2,6),(3,4)]              => 1
[(1,6),(2,5),(3,4)]              => 0
[(1,2),(3,4),(5,6),(7,8)]        => 0
[(1,3),(2,4),(5,6),(7,8)]        => 1
[(1,4),(2,3),(5,6),(7,8)]        => 0
[(1,5),(2,3),(4,6),(7,8)]        => 1
[(1,6),(2,3),(4,5),(7,8)]        => 0
[(1,7),(2,3),(4,5),(6,8)]        => 1
[(1,8),(2,3),(4,5),(6,7)]        => 0
[(1,8),(2,4),(3,5),(6,7)]        => 1
[(1,7),(2,4),(3,5),(6,8)]        => 2
[(1,6),(2,4),(3,5),(7,8)]        => 1
[(1,5),(2,4),(3,6),(7,8)]        => 1
[(1,4),(2,5),(3,6),(7,8)]        => 1
[(1,3),(2,5),(4,6),(7,8)]        => 1
[(1,2),(3,5),(4,6),(7,8)]        => 1
[(1,2),(3,6),(4,5),(7,8)]        => 0
[(1,3),(2,6),(4,5),(7,8)]        => 1
[(1,4),(2,6),(3,5),(7,8)]        => 1
[(1,5),(2,6),(3,4),(7,8)]        => 1
[(1,6),(2,5),(3,4),(7,8)]        => 0
[(1,7),(2,5),(3,4),(6,8)]        => 1
[(1,8),(2,5),(3,4),(6,7)]        => 0
[(1,8),(2,6),(3,4),(5,7)]        => 1
[(1,7),(2,6),(3,4),(5,8)]        => 1
[(1,6),(2,7),(3,4),(5,8)]        => 1
[(1,5),(2,7),(3,4),(6,8)]        => 1
[(1,4),(2,7),(3,5),(6,8)]        => 2
[(1,3),(2,7),(4,5),(6,8)]        => 1
[(1,2),(3,7),(4,5),(6,8)]        => 1
[(1,2),(3,8),(4,5),(6,7)]        => 0
[(1,3),(2,8),(4,5),(6,7)]        => 1
[(1,4),(2,8),(3,5),(6,7)]        => 1
[(1,5),(2,8),(3,4),(6,7)]        => 1
[(1,6),(2,8),(3,4),(5,7)]        => 1
[(1,7),(2,8),(3,4),(5,6)]        => 1
[(1,8),(2,7),(3,4),(5,6)]        => 0
[(1,8),(2,7),(3,5),(4,6)]        => 1
[(1,7),(2,8),(3,5),(4,6)]        => 2
[(1,6),(2,8),(3,5),(4,7)]        => 2
[(1,5),(2,8),(3,6),(4,7)]        => 2
[(1,4),(2,8),(3,6),(5,7)]        => 2
[(1,3),(2,8),(4,6),(5,7)]        => 2
[(1,2),(3,8),(4,6),(5,7)]        => 1
[(1,2),(3,7),(4,6),(5,8)]        => 1
[(1,3),(2,7),(4,6),(5,8)]        => 2
[(1,4),(2,7),(3,6),(5,8)]        => 1
[(1,5),(2,7),(3,6),(4,8)]        => 1
[(1,6),(2,7),(3,5),(4,8)]        => 2
[(1,7),(2,6),(3,5),(4,8)]        => 1
[(1,8),(2,6),(3,5),(4,7)]        => 1
[(1,8),(2,5),(3,6),(4,7)]        => 1
[(1,7),(2,5),(3,6),(4,8)]        => 2
[(1,6),(2,5),(3,7),(4,8)]        => 1
[(1,5),(2,6),(3,7),(4,8)]        => 2
[(1,4),(2,6),(3,7),(5,8)]        => 1
[(1,3),(2,6),(4,7),(5,8)]        => 2
[(1,2),(3,6),(4,7),(5,8)]        => 1
[(1,2),(3,5),(4,7),(6,8)]        => 1
[(1,3),(2,5),(4,7),(6,8)]        => 2
[(1,4),(2,5),(3,7),(6,8)]        => 2
[(1,5),(2,4),(3,7),(6,8)]        => 1
[(1,6),(2,4),(3,7),(5,8)]        => 2
[(1,7),(2,4),(3,6),(5,8)]        => 2
[(1,8),(2,4),(3,6),(5,7)]        => 1
[(1,8),(2,3),(4,6),(5,7)]        => 1
[(1,7),(2,3),(4,6),(5,8)]        => 1
[(1,6),(2,3),(4,7),(5,8)]        => 1
[(1,5),(2,3),(4,7),(6,8)]        => 1
[(1,4),(2,3),(5,7),(6,8)]        => 1
[(1,3),(2,4),(5,7),(6,8)]        => 2
[(1,2),(3,4),(5,7),(6,8)]        => 1
[(1,2),(3,4),(5,8),(6,7)]        => 0
[(1,3),(2,4),(5,8),(6,7)]        => 1
[(1,4),(2,3),(5,8),(6,7)]        => 0
[(1,5),(2,3),(4,8),(6,7)]        => 1
[(1,6),(2,3),(4,8),(5,7)]        => 1
[(1,7),(2,3),(4,8),(5,6)]        => 1
[(1,8),(2,3),(4,7),(5,6)]        => 0
[(1,8),(2,4),(3,7),(5,6)]        => 1
[(1,7),(2,4),(3,8),(5,6)]        => 1
[(1,6),(2,4),(3,8),(5,7)]        => 2
[(1,5),(2,4),(3,8),(6,7)]        => 1
[(1,4),(2,5),(3,8),(6,7)]        => 1
[(1,3),(2,5),(4,8),(6,7)]        => 1
[(1,2),(3,5),(4,8),(6,7)]        => 1
[(1,2),(3,6),(4,8),(5,7)]        => 1
[(1,3),(2,6),(4,8),(5,7)]        => 1
[(1,4),(2,6),(3,8),(5,7)]        => 2
[(1,5),(2,6),(3,8),(4,7)]        => 1
[(1,6),(2,5),(3,8),(4,7)]        => 1
[(1,7),(2,5),(3,8),(4,6)]        => 2
[(1,8),(2,5),(3,7),(4,6)]        => 1
[(1,8),(2,6),(3,7),(4,5)]        => 1
[(1,7),(2,6),(3,8),(4,5)]        => 1
[(1,6),(2,7),(3,8),(4,5)]        => 1
[(1,5),(2,7),(3,8),(4,6)]        => 2
[(1,4),(2,7),(3,8),(5,6)]        => 1
[(1,3),(2,7),(4,8),(5,6)]        => 1
[(1,2),(3,7),(4,8),(5,6)]        => 1
[(1,2),(3,8),(4,7),(5,6)]        => 0
[(1,3),(2,8),(4,7),(5,6)]        => 1
[(1,4),(2,8),(3,7),(5,6)]        => 1
[(1,5),(2,8),(3,7),(4,6)]        => 1
[(1,6),(2,8),(3,7),(4,5)]        => 1
[(1,7),(2,8),(3,6),(4,5)]        => 1
[(1,8),(2,7),(3,6),(4,5)]        => 0
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 0
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 1
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 0
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 1
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 0
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 1
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 0
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 0
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 1
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 1
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 1
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 1
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 1
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 1
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 0
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 1
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 1
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 1
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 0
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 1
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 0
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 1
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 0
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 1
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 2
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 1
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 1
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 1
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 1
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 1
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 1
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 0
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 1
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 1
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 1
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 1
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 1
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 0
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 1
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 0
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 1
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 1
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 1
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 1
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 2
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 1
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 1
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 0
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 1
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 1
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 1
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 1
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 1
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 1
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 1
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 0
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 2
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 2
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 2
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 2
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 2
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 2
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 1
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 2
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 2
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 2
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 2
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 2
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 2
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 2
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 1
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 2
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 1
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 1
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 1
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 1
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 1
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 1
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 1
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 2
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 1
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 1
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 2
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 1
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 1
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 1
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 1
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 1
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 2
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 1
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 2
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 1
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 2
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 1
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 2
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 1
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 1
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 1
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 1
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 1
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 1
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 0
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 1
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 0
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 1
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 1
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 1
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 0
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 1
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 0
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 1
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 2
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 1
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 1
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 1
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 1
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 1
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 1
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 1
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 1
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 1
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 1
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 1
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 2
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 1
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 1
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 2
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 1
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 1
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 1
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 1
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 1
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 1
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 0
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 1
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 1
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 1
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 1
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 1
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 0
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 1
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 0
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 1
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 1
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 1
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 1
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 2
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 2
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 2
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 1
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 1
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 0
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 1
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 1
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 1
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 1
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 1
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 1
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 0
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 1
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 2
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 2
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 2
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 2
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 2
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 2
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 2
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 1
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 1
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 2
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 1
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 2
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 1
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 1
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 2
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 1
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 1
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 1
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 2
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 1
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 2
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 1
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 2
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 1
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 2
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 1
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 1
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 2
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 2
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 2
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 2
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 1
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 2
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 2
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 1
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 2
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 2
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 2
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 2
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 2
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 2
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 1
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 2
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 1
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 2
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 1
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 2
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 2
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 1
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 1
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 1
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 1
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 1
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 2
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 1
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 1
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 1
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 0
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 1
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 0
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 1
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 1
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 1
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 1
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 0
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 1
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 1
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 1
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 1
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 1
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 1
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 1
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 1
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 1
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 1
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 2
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 2
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 1
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 1
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 1
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 1
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 1
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 2
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 1
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 1
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 1
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 1
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 1
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 2
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 2
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 1
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 2
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 1
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 1
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 1
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 2
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 1
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 2
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 1
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 1
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 1
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 0
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 1
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 1
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 1
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 1
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 1
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 1
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 1
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 0
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 2
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 2
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 2
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 2
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 2
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 2
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 2
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 1
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 2
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 2
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 2
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 2
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 2
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 2
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 2
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 2
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 2
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 2
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 2
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 2
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 2
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 2
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 2
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 2
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 2
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 2
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 2
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 2
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 2
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 2
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 2
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 2
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 2
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 2
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 2
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 2
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 2
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 2
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 2
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 2
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 2
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 2
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 2
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 2
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 2
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 2
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 2
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 2
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 2
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 1
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 2
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 1
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 1
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 1
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 1
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 1
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 2
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 1
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 1
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 2
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 2
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 2
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 2
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 2
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 1
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 2
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 2
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 1
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 2
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 2
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 2
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 1
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 1
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 2
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 2
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 1
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 2
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 1
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 2
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 2
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 1
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 2
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 2
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 2
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 2
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 2
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 2
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 2
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 2
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 1
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 1
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 2
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 2
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 2
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 2
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 1
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 1
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 2
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 2
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 2
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 2
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 2
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 2
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 2
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 1
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 1
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 2
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 2
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 2
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 2
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 2
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 2
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 2
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 1
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 2
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 2
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 2
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 2
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 2
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 2
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 2
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 2
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 1
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 2
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 1
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 2
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 2
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 1
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 2
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 2
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 1
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 2
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 2
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 2
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 2
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 2
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 2
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 2
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 2
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 1
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 1
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 2
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 2
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 2
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 1
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 2
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 2
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 2
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 2
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 2
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 2
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 2
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 2
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 1
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 1
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 1
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 1
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 1
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 1
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 2
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 1
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 2
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 1
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 2
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 2
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 2
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 2
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 2
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 2
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 2
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 2
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 2
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 2
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 2
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 2
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 1
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 2
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 2
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 1
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 2
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 2
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 2
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 2
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 1
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 2
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 2
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 2
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 2
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 2
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 2
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 2
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 2
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 2
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 2
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 2
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 2
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 2
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 2
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 2
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 1
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 2
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 2
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 2
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 2
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 2
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 1
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 2
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 2
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 2
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 2
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 2
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 2
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 1
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 1
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 1
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 2
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 1
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 1
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 1
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 1
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 1
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 2
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 1
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 1
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 2
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 2
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 2
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 1
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 2
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 2
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 1
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 1
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 1
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 1
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 1
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 1
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 2
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 2
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 2
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 2
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 1
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 1
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 1
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 1
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 1
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 1
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 1
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 0
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 1
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 0
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 1
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 0
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 1
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 1
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 1
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 0
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 1
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 2
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 2
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 1
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 1
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 1
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 1
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 1
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 0
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 1
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 1
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 1
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 0
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 1
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 1
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 1
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 0
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 1
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 1
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 2
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 1
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 1
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 1
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 2
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 1
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 1
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 1
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 1
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 2
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 1
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 2
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 1
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 2
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 1
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 1
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 1
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 1
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 2
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 1
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 1
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 2
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 1
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 1
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 0
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 1
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 1
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 1
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 1
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 1
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 1
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 1
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 0
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 1
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 2
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 2
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 2
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 2
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 2
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 2
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 2
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 1
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 1
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 1
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 1
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 2
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 2
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 1
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 1
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 2
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 2
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 2
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 2
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 2
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 2
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 2
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 1
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 1
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 1
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 1
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 2
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 1
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 1
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 1
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 2
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 2
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 1
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 2
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 1
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 2
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 1
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 1
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 2
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 1
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 2
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 1
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 1
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 1
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 1
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 1
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 1
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 1
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 1
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 1
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 1
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 1
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 1
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 2
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 1
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 1
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 2
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 2
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 2
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 2
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 1
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 2
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 2
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 1
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 2
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 2
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 2
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 2
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 2
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 2
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 2
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 2
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 1
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 2
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 2
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 2
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 2
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 1
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 2
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 1
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 1
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 2
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 2
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 1
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 2
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 2
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 1
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 2
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 2
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 2
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 2
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 2
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 1
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 2
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 2
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 2
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 2
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 2
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 2
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 2
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 1
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 2
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 2
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 2
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 2
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 2
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 2
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 2
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 1
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 1
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 2
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 1
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 1
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 2
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 1
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 2
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 1
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 1
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 1
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 2
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 1
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 2
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 2
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 2
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 1
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 2
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 1
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 2
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 2
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 2
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 2
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 2
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 2
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 2
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 2
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 1
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 2
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 1
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 2
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 1
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 2
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 1
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 1
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 1
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 2
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 1
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 2
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 2
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 2
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 2
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 1
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 1
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 1
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 1
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 1
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 1
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 1
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 1
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 0
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 1
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 0
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 1
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 1
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 1
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 1
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 1
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 0
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 1
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 1
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 2
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 2
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 2
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 1
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 1
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 1
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 1
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 1
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 1
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 2
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 1
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 1
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 2
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 1
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 2
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 1
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 1
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 2
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 2
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 2
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 1
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 1
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 1
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 1
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 2
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 1
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 2
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 1
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 1
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 2
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 1
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 1
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 1
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 2
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 2
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 2
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 1
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 1
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 1
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 0
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 1
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 1
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 1
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 1
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 1
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 1
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 0

-----------------------------------------------------------------------------
Created: Jul 17, 2019 at 00:46 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Jul 17, 2019 at 00:46 by Martin Rubey