*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001440

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.

-----------------------------------------------------------------------------
References: [1]   Ahlbach, C., Swanson, J. P. Cyclic sieving, necklaces, and branching rules related to Thrall's problem [[arXiv:1808.06043]]

-----------------------------------------------------------------------------
Code:
def statistic(P):
    n = P.size()
    return sum(Integer(1) for T in StandardTableaux(P) if T.standard_major_index() % n == 1)


-----------------------------------------------------------------------------
Statistic values:

[1]                   => 0
[2]                   => 0
[1,1]                 => 1
[3]                   => 0
[2,1]                 => 1
[1,1,1]               => 0
[4]                   => 0
[3,1]                 => 1
[2,2]                 => 0
[2,1,1]               => 1
[1,1,1,1]             => 0
[5]                   => 0
[4,1]                 => 1
[3,2]                 => 1
[3,1,1]               => 1
[2,2,1]               => 1
[2,1,1,1]             => 1
[1,1,1,1,1]           => 0
[6]                   => 0
[5,1]                 => 1
[4,2]                 => 1
[4,1,1]               => 2
[3,3]                 => 1
[3,2,1]               => 3
[3,1,1,1]             => 1
[2,2,2]               => 0
[2,2,1,1]             => 2
[2,1,1,1,1]           => 1
[1,1,1,1,1,1]         => 0
[7]                   => 0
[6,1]                 => 1
[5,2]                 => 2
[5,1,1]               => 2
[4,3]                 => 2
[4,2,1]               => 5
[4,1,1,1]             => 3
[3,3,1]               => 3
[3,2,2]               => 3
[3,2,1,1]             => 5
[3,1,1,1,1]           => 2
[2,2,2,1]             => 2
[2,2,1,1,1]           => 2
[2,1,1,1,1,1]         => 1
[1,1,1,1,1,1,1]       => 0
[8]                   => 0
[7,1]                 => 1
[6,2]                 => 2
[6,1,1]               => 3
[5,3]                 => 4
[5,2,1]               => 8
[5,1,1,1]             => 4
[4,4]                 => 1
[4,3,1]               => 9
[4,2,2]               => 6
[4,2,1,1]             => 12
[4,1,1,1,1]           => 4
[3,3,2]               => 6
[3,3,1,1]             => 6
[3,2,2,1]             => 9
[3,2,1,1,1]           => 8
[3,1,1,1,1,1]         => 3
[2,2,2,2]             => 1
[2,2,2,1,1]           => 4
[2,2,1,1,1,1]         => 2
[2,1,1,1,1,1,1]       => 1
[1,1,1,1,1,1,1,1]     => 0
[9]                   => 0
[8,1]                 => 1
[7,2]                 => 3
[7,1,1]               => 3
[6,3]                 => 5
[6,2,1]               => 12
[6,1,1,1]             => 6
[5,4]                 => 5
[5,3,1]               => 18
[5,2,2]               => 13
[5,2,1,1]             => 21
[5,1,1,1,1]           => 8
[4,4,1]               => 9
[4,3,2]               => 19
[4,3,1,1]             => 24
[4,2,2,1]             => 24
[4,2,1,1,1]           => 21
[4,1,1,1,1,1]         => 6
[3,3,3]               => 4
[3,3,2,1]             => 19
[3,3,1,1,1]           => 13
[3,2,2,2]             => 9
[3,2,2,1,1]           => 18
[3,2,1,1,1,1]         => 12
[3,1,1,1,1,1,1]       => 3
[2,2,2,2,1]           => 5
[2,2,2,1,1,1]         => 5
[2,2,1,1,1,1,1]       => 3
[2,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,1,1,1]   => 0
[10]                  => 0
[9,1]                 => 1
[8,2]                 => 3
[8,1,1]               => 4
[7,3]                 => 8
[7,2,1]               => 16
[7,1,1,1]             => 8
[6,4]                 => 8
[6,3,1]               => 32
[6,2,2]               => 21
[6,2,1,1]             => 36
[6,1,1,1,1]           => 12
[5,5]                 => 5
[5,4,1]               => 29
[5,3,2]               => 46
[5,3,1,1]             => 55
[5,2,2,1]             => 53
[5,2,1,1,1]           => 45
[5,1,1,1,1,1]         => 13
[4,4,2]               => 23
[4,4,1,1]             => 32
[4,3,3]               => 22
[4,3,2,1]             => 77
[4,3,1,1,1]           => 52
[4,2,2,2]             => 28
[4,2,2,1,1]           => 58
[4,2,1,1,1,1]         => 34
[4,1,1,1,1,1,1]       => 9
[3,3,3,1]             => 20
[3,3,2,2]             => 27
[3,3,2,1,1]           => 44
[3,3,1,1,1,1]         => 24
[3,2,2,2,1]           => 29
[3,2,2,1,1,1]         => 31
[3,2,1,1,1,1,1]       => 16
[3,1,1,1,1,1,1,1]     => 3
[2,2,2,2,2]           => 3
[2,2,2,2,1,1]         => 10
[2,2,2,1,1,1,1]       => 7
[2,2,1,1,1,1,1,1]     => 4
[2,1,1,1,1,1,1,1,1]   => 1
[1,1,1,1,1,1,1,1,1,1] => 0
[5,4,2]               => 90
[5,4,1,1]             => 105
[5,3,3]               => 60
[5,3,2,1]             => 210
[5,3,1,1,1]           => 140
[5,2,2,2]             => 75
[5,2,2,1,1]           => 140
[4,4,3]               => 42
[4,4,2,1]             => 120
[4,4,1,1,1]           => 75
[4,3,3,1]             => 108
[4,3,2,2]             => 120
[4,3,2,1,1]           => 210
[4,2,2,2,1]           => 105
[3,3,3,2]             => 42
[3,3,3,1,1]           => 60
[3,3,2,2,1]           => 90
[6,4,2]               => 219
[5,4,3]               => 177
[5,4,2,1]             => 481
[5,4,1,1,1]           => 294
[5,3,3,1]             => 344
[5,3,2,2]             => 375
[5,3,2,1,1]           => 640
[5,2,2,2,1]           => 294
[4,4,3,1]             => 250
[4,4,2,2]             => 214
[4,4,2,1,1]           => 375
[4,3,3,2]             => 250
[4,3,3,1,1]           => 344
[4,3,2,2,1]           => 481
[3,3,3,2,1]           => 177
[3,3,2,2,1,1]         => 219
[5,4,3,1]             => 1155
[5,4,2,2]             => 990
[5,4,2,1,1]           => 1650
[5,3,3,2]             => 891
[5,3,3,1,1]           => 1232
[5,3,2,2,1]           => 1650
[4,4,3,2]             => 660
[4,4,3,1,1]           => 891
[4,4,2,2,1]           => 990
[4,3,3,2,1]           => 1155
[5,4,3,2]             => 3432
[5,4,3,1,1]           => 4576
[5,4,2,2,1]           => 4903
[5,3,3,2,1]           => 4576
[4,4,3,2,1]           => 3432
[5,4,3,2,1]           => 19522

-----------------------------------------------------------------------------
Created: Jul 02, 2019 at 14:58 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Jul 02, 2019 at 22:27 by Martin Rubey