Identifier
-
Mp00021:
Cores
—to bounded partition⟶
Integer partitions
St001385: Integer partitions ⟶ ℤ
Values
([2],3) => [2] => 1
([1,1],3) => [1,1] => 1
([3,1],3) => [2,1] => 1
([2,1,1],3) => [1,1,1] => 1
([4,2],3) => [2,2] => 1
([3,1,1],3) => [2,1,1] => 1
([2,2,1,1],3) => [1,1,1,1] => 1
([5,3,1],3) => [2,2,1] => 1
([4,2,1,1],3) => [2,1,1,1] => 1
([3,2,2,1,1],3) => [1,1,1,1,1] => 1
([6,4,2],3) => [2,2,2] => 1
([5,3,1,1],3) => [2,2,1,1] => 1
([4,2,2,1,1],3) => [2,1,1,1,1] => 1
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 1
([2],4) => [2] => 1
([1,1],4) => [1,1] => 1
([3],4) => [3] => 2
([2,1],4) => [2,1] => 1
([1,1,1],4) => [1,1,1] => 1
([4,1],4) => [3,1] => 2
([2,2],4) => [2,2] => 1
([3,1,1],4) => [2,1,1] => 1
([2,1,1,1],4) => [1,1,1,1] => 1
([5,2],4) => [3,2] => 2
([4,1,1],4) => [3,1,1] => 2
([3,2,1],4) => [2,2,1] => 1
([3,1,1,1],4) => [2,1,1,1] => 1
([2,2,1,1,1],4) => [1,1,1,1,1] => 1
([6,3],4) => [3,3] => 4
([5,2,1],4) => [3,2,1] => 2
([4,1,1,1],4) => [3,1,1,1] => 2
([4,2,2],4) => [2,2,2] => 1
([3,3,1,1],4) => [2,2,1,1] => 1
([3,2,1,1,1],4) => [2,1,1,1,1] => 1
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 1
([2],5) => [2] => 1
([1,1],5) => [1,1] => 1
([3],5) => [3] => 2
([2,1],5) => [2,1] => 1
([1,1,1],5) => [1,1,1] => 1
([4],5) => [4] => 6
([3,1],5) => [3,1] => 2
([2,2],5) => [2,2] => 1
([2,1,1],5) => [2,1,1] => 1
([1,1,1,1],5) => [1,1,1,1] => 1
([5,1],5) => [4,1] => 6
([3,2],5) => [3,2] => 2
([4,1,1],5) => [3,1,1] => 2
([2,2,1],5) => [2,2,1] => 1
([3,1,1,1],5) => [2,1,1,1] => 1
([2,1,1,1,1],5) => [1,1,1,1,1] => 1
([6,2],5) => [4,2] => 6
([5,1,1],5) => [4,1,1] => 6
([3,3],5) => [3,3] => 4
([4,2,1],5) => [3,2,1] => 2
([4,1,1,1],5) => [3,1,1,1] => 2
([2,2,2],5) => [2,2,2] => 1
([3,2,1,1],5) => [2,2,1,1] => 1
([3,1,1,1,1],5) => [2,1,1,1,1] => 1
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 1
([2],6) => [2] => 1
([1,1],6) => [1,1] => 1
([3],6) => [3] => 2
([2,1],6) => [2,1] => 1
([1,1,1],6) => [1,1,1] => 1
([4],6) => [4] => 6
([3,1],6) => [3,1] => 2
([2,2],6) => [2,2] => 1
([2,1,1],6) => [2,1,1] => 1
([1,1,1,1],6) => [1,1,1,1] => 1
([5],6) => [5] => 6
([4,1],6) => [4,1] => 6
([3,2],6) => [3,2] => 2
([3,1,1],6) => [3,1,1] => 2
([2,2,1],6) => [2,2,1] => 1
([2,1,1,1],6) => [2,1,1,1] => 1
([1,1,1,1,1],6) => [1,1,1,1,1] => 1
([6,1],6) => [5,1] => 6
([4,2],6) => [4,2] => 6
([5,1,1],6) => [4,1,1] => 6
([3,3],6) => [3,3] => 4
([3,2,1],6) => [3,2,1] => 2
([4,1,1,1],6) => [3,1,1,1] => 2
([2,2,2],6) => [2,2,2] => 1
([2,2,1,1],6) => [2,2,1,1] => 1
([3,1,1,1,1],6) => [2,1,1,1,1] => 1
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 1
([7,2],6) => [5,2] => 6
([6,1,1],6) => [5,1,1] => 6
([4,3],6) => [4,3] => 12
([5,2,1],6) => [4,2,1] => 6
([5,1,1,1],6) => [4,1,1,1] => 6
([3,3,1],6) => [3,3,1] => 4
([3,2,2],6) => [3,2,2] => 2
([4,2,1,1],6) => [3,2,1,1] => 2
([4,1,1,1,1],6) => [3,1,1,1,1] => 2
([2,2,2,1],6) => [2,2,2,1] => 1
([3,2,1,1,1],6) => [2,2,1,1,1] => 1
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 1
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition.
Equivalently, given an integer partition $\lambda$, this is the number of molecular combinatorial species that decompose into a product of atomic species of sizes $\lambda_1,\lambda_2,\dots$. In particular, the value on the partition $(n)$ is the number of atomic species of degree $n$, [2].
Equivalently, given an integer partition $\lambda$, this is the number of molecular combinatorial species that decompose into a product of atomic species of sizes $\lambda_1,\lambda_2,\dots$. In particular, the value on the partition $(n)$ is the number of atomic species of degree $n$, [2].
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!