Identifier
Values
([2],3) => [2] => 1
([1,1],3) => [1,1] => 1
([3,1],3) => [2,1] => 1
([2,1,1],3) => [1,1,1] => 3
([4,2],3) => [2,2] => 1
([3,1,1],3) => [2,1,1] => 1
([2,2,1,1],3) => [1,1,1,1] => 9
([5,3,1],3) => [2,2,1] => 1
([4,2,1,1],3) => [2,1,1,1] => 3
([3,2,2,1,1],3) => [1,1,1,1,1] => 21
([6,4,2],3) => [2,2,2] => 9
([5,3,1,1],3) => [2,2,1,1] => 1
([4,2,2,1,1],3) => [2,1,1,1,1] => 9
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 81
([2],4) => [2] => 1
([1,1],4) => [1,1] => 1
([3],4) => [3] => 0
([2,1],4) => [2,1] => 1
([1,1,1],4) => [1,1,1] => 3
([4,1],4) => [3,1] => 0
([2,2],4) => [2,2] => 1
([3,1,1],4) => [2,1,1] => 1
([2,1,1,1],4) => [1,1,1,1] => 9
([5,2],4) => [3,2] => 0
([4,1,1],4) => [3,1,1] => 0
([3,2,1],4) => [2,2,1] => 1
([3,1,1,1],4) => [2,1,1,1] => 3
([2,2,1,1,1],4) => [1,1,1,1,1] => 21
([6,3],4) => [3,3] => 0
([5,2,1],4) => [3,2,1] => 0
([4,1,1,1],4) => [3,1,1,1] => 0
([4,2,2],4) => [2,2,2] => 9
([3,3,1,1],4) => [2,2,1,1] => 1
([3,2,1,1,1],4) => [2,1,1,1,1] => 9
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 81
([2],5) => [2] => 1
([1,1],5) => [1,1] => 1
([3],5) => [3] => 0
([2,1],5) => [2,1] => 1
([1,1,1],5) => [1,1,1] => 3
([4],5) => [4] => 1
([3,1],5) => [3,1] => 0
([2,2],5) => [2,2] => 1
([2,1,1],5) => [2,1,1] => 1
([1,1,1,1],5) => [1,1,1,1] => 9
([5,1],5) => [4,1] => 1
([3,2],5) => [3,2] => 0
([4,1,1],5) => [3,1,1] => 0
([2,2,1],5) => [2,2,1] => 1
([3,1,1,1],5) => [2,1,1,1] => 3
([2,1,1,1,1],5) => [1,1,1,1,1] => 21
([6,2],5) => [4,2] => 1
([5,1,1],5) => [4,1,1] => 1
([3,3],5) => [3,3] => 0
([4,2,1],5) => [3,2,1] => 0
([4,1,1,1],5) => [3,1,1,1] => 0
([2,2,2],5) => [2,2,2] => 9
([3,2,1,1],5) => [2,2,1,1] => 1
([3,1,1,1,1],5) => [2,1,1,1,1] => 9
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 81
([2],6) => [2] => 1
([1,1],6) => [1,1] => 1
([3],6) => [3] => 0
([2,1],6) => [2,1] => 1
([1,1,1],6) => [1,1,1] => 3
([4],6) => [4] => 1
([3,1],6) => [3,1] => 0
([2,2],6) => [2,2] => 1
([2,1,1],6) => [2,1,1] => 1
([1,1,1,1],6) => [1,1,1,1] => 9
([5],6) => [5] => 1
([4,1],6) => [4,1] => 1
([3,2],6) => [3,2] => 0
([3,1,1],6) => [3,1,1] => 0
([2,2,1],6) => [2,2,1] => 1
([2,1,1,1],6) => [2,1,1,1] => 3
([1,1,1,1,1],6) => [1,1,1,1,1] => 21
([6,1],6) => [5,1] => 1
([4,2],6) => [4,2] => 1
([5,1,1],6) => [4,1,1] => 1
([3,3],6) => [3,3] => 0
([3,2,1],6) => [3,2,1] => 0
([4,1,1,1],6) => [3,1,1,1] => 0
([2,2,2],6) => [2,2,2] => 9
([2,2,1,1],6) => [2,2,1,1] => 1
([3,1,1,1,1],6) => [2,1,1,1,1] => 9
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 81
([7,2],6) => [5,2] => 1
([6,1,1],6) => [5,1,1] => 1
([4,3],6) => [4,3] => 0
([5,2,1],6) => [4,2,1] => 1
([5,1,1,1],6) => [4,1,1,1] => 3
([3,3,1],6) => [3,3,1] => 0
([3,2,2],6) => [3,2,2] => 0
([4,2,1,1],6) => [3,2,1,1] => 0
([4,1,1,1,1],6) => [3,1,1,1,1] => 0
([2,2,2,1],6) => [2,2,2,1] => 9
([3,2,1,1,1],6) => [2,2,1,1,1] => 3
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 21
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 351
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations whose cube equals a fixed permutation of given cycle type.
For example, the permutation $\pi=412365$ has cycle type $(4,2)$ and $234165$ is the unique permutation whose cube is $\pi$.
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].