Values
=>
Cc0020;cc-rep-0
Cc0020;cc-rep
([],1)=>([],1)=>1
([],2)=>([],1)=>1
([(0,1)],2)=>([(0,1)],2)=>1
([],3)=>([],1)=>1
([(1,2)],3)=>([(0,1)],2)=>1
([(0,2),(1,2)],3)=>([(0,1)],2)=>1
([(0,1),(0,2),(1,2)],3)=>([(0,1),(0,2),(1,2)],3)=>1
([],4)=>([],1)=>1
([(2,3)],4)=>([(0,1)],2)=>1
([(1,3),(2,3)],4)=>([(0,1)],2)=>1
([(0,3),(1,3),(2,3)],4)=>([(0,1)],2)=>1
([(0,3),(1,2)],4)=>([(0,1)],2)=>1
([(0,3),(1,2),(2,3)],4)=>([(0,1)],2)=>1
([(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,2),(0,3),(1,2),(1,3)],4)=>([(0,1)],2)=>1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([],5)=>([],1)=>1
([(3,4)],5)=>([(0,1)],2)=>1
([(2,4),(3,4)],5)=>([(0,1)],2)=>1
([(1,4),(2,4),(3,4)],5)=>([(0,1)],2)=>1
([(0,4),(1,4),(2,4),(3,4)],5)=>([(0,1)],2)=>1
([(1,4),(2,3)],5)=>([(0,1)],2)=>1
([(1,4),(2,3),(3,4)],5)=>([(0,1)],2)=>1
([(0,1),(2,4),(3,4)],5)=>([(0,1)],2)=>1
([(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,4),(2,3),(3,4)],5)=>([(0,1)],2)=>1
([(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1)],2)=>1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>([(0,1)],2)=>1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1)],2)=>1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,3),(2,3),(2,4)],5)=>([(0,1)],2)=>1
([(0,1),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([],6)=>([],1)=>1
([(4,5)],6)=>([(0,1)],2)=>1
([(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(2,5),(3,4)],6)=>([(0,1)],2)=>1
([(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(1,2),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,5),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(0,1),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,5),(2,4),(3,4)],6)=>([(0,1)],2)=>1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(2,3)],6)=>([(0,1)],2)=>1
([(1,5),(2,4),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,1),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(1,2),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>([(0,1)],2)=>1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>([(0,1)],2)=>1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!