Values
([],1) => ([],1) => 1
([],2) => ([],1) => 1
([(0,1)],2) => ([(0,1)],2) => 1
([],3) => ([],1) => 1
([(1,2)],3) => ([(0,1)],2) => 1
([(0,2),(1,2)],3) => ([(0,1)],2) => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 1
([],4) => ([],1) => 1
([(2,3)],4) => ([(0,1)],2) => 1
([(1,3),(2,3)],4) => ([(0,1)],2) => 1
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 1
([(0,3),(1,2)],4) => ([(0,1)],2) => 1
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([],5) => ([],1) => 1
([(3,4)],5) => ([(0,1)],2) => 1
([(2,4),(3,4)],5) => ([(0,1)],2) => 1
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
([(1,4),(2,3)],5) => ([(0,1)],2) => 1
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => 1
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => 1
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([],6) => ([],1) => 1
([(4,5)],6) => ([(0,1)],2) => 1
([(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(2,5),(3,4)],6) => ([(0,1)],2) => 1
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => 1
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of G.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of K4 by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
This is the maximum cardinality of a minimal dominating set of G.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of K4 by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!