Processing math: 100%

Identifier
Values
[1] => 1 => [1,1] => ([(0,1)],2) => 2
[2] => 0 => [2] => ([],2) => 1
[1,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[3] => 1 => [1,1] => ([(0,1)],2) => 2
[2,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[4] => 0 => [2] => ([],2) => 1
[3,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[2,2] => 00 => [3] => ([],3) => 1
[1,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5] => 1 => [1,1] => ([(0,1)],2) => 2
[4,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[3,2] => 10 => [1,2] => ([(1,2)],3) => 2
[3,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[2,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[1,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[6] => 0 => [2] => ([],2) => 1
[5,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[4,2] => 00 => [3] => ([],3) => 1
[3,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[3,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,2,2] => 000 => [4] => ([],4) => 1
[1,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[7] => 1 => [1,1] => ([(0,1)],2) => 2
[6,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[5,2] => 10 => [1,2] => ([(1,2)],3) => 2
[5,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[4,3] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[4,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[3,3,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,2,2] => 100 => [1,3] => ([(2,3)],4) => 2
[3,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,2,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[8] => 0 => [2] => ([],2) => 1
[7,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[6,2] => 00 => [3] => ([],3) => 1
[5,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[5,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,4] => 00 => [3] => ([],3) => 1
[4,2,2] => 000 => [4] => ([],4) => 1
[3,3,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[3,3,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,2,2,2] => 0000 => [5] => ([],5) => 1
[9] => 1 => [1,1] => ([(0,1)],2) => 2
[8,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[7,2] => 10 => [1,2] => ([(1,2)],3) => 2
[7,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[6,3] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[6,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[5,4] => 10 => [1,2] => ([(1,2)],3) => 2
[5,3,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[5,2,2] => 100 => [1,3] => ([(2,3)],4) => 2
[5,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[4,4,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[4,3,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[4,2,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[3,3,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,3,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,2,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[3,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[2,2,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[10] => 0 => [2] => ([],2) => 1
[9,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[8,2] => 00 => [3] => ([],3) => 1
[7,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[7,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[6,4] => 00 => [3] => ([],3) => 1
[6,2,2] => 000 => [4] => ([],4) => 1
[5,5] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[5,3,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[5,3,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[4,4,2] => 000 => [4] => ([],4) => 1
[4,2,2,2] => 0000 => [5] => ([],5) => 1
[3,3,3,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,3,2,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[3,3,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[2,2,2,2,2] => 00000 => [6] => ([],6) => 1
[11] => 1 => [1,1] => ([(0,1)],2) => 2
[10,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[9,2] => 10 => [1,2] => ([(1,2)],3) => 2
[9,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[8,3] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[8,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[7,4] => 10 => [1,2] => ([(1,2)],3) => 2
[7,3,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,2,2] => 100 => [1,3] => ([(2,3)],4) => 2
[7,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[6,5] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[6,4,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[6,3,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[6,2,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[5,5,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[5,4,2] => 100 => [1,3] => ([(2,3)],4) => 2
[5,3,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[5,3,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,2,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[5,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[4,4,3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
>>> Load all 413 entries. <<<
[4,4,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,3,2,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[4,2,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[3,3,3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[3,3,3,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,3,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[3,2,2,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[2,2,2,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[12] => 0 => [2] => ([],2) => 1
[11,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[10,2] => 00 => [3] => ([],3) => 1
[9,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[9,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[8,4] => 00 => [3] => ([],3) => 1
[8,2,2] => 000 => [4] => ([],4) => 1
[7,5] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[7,3,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[7,3,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[7,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[6,6] => 00 => [3] => ([],3) => 1
[6,4,2] => 000 => [4] => ([],4) => 1
[6,2,2,2] => 0000 => [5] => ([],5) => 1
[5,5,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[5,5,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,3,3,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,3,2,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[5,3,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[4,4,4] => 000 => [4] => ([],4) => 1
[4,4,2,2] => 0000 => [5] => ([],5) => 1
[4,2,2,2,2] => 00000 => [6] => ([],6) => 1
[3,3,3,3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,3,3,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[3,3,2,2,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
[13] => 1 => [1,1] => ([(0,1)],2) => 2
[12,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[11,2] => 10 => [1,2] => ([(1,2)],3) => 2
[11,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[10,3] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[10,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[9,4] => 10 => [1,2] => ([(1,2)],3) => 2
[9,3,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[9,2,2] => 100 => [1,3] => ([(2,3)],4) => 2
[9,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[8,5] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[8,4,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[8,3,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[8,2,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[7,6] => 10 => [1,2] => ([(1,2)],3) => 2
[7,5,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,4,2] => 100 => [1,3] => ([(2,3)],4) => 2
[7,3,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,3,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7,2,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[7,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[6,6,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[6,5,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[6,4,3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[6,4,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[6,3,2,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[6,2,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,5,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[5,5,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,4] => 100 => [1,3] => ([(2,3)],4) => 2
[5,4,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[5,3,3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,3,3,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,3,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[5,2,2,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[4,4,4,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,4,3,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[4,4,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,3,2,2,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 2
[4,2,2,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[3,3,3,3,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,3,3,2,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[3,3,3,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[2,2,2,2,2,2,1] => 0000001 => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[14] => 0 => [2] => ([],2) => 1
[13,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[12,2] => 00 => [3] => ([],3) => 1
[11,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[11,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[10,4] => 00 => [3] => ([],3) => 1
[10,2,2] => 000 => [4] => ([],4) => 1
[9,5] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[9,3,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[9,3,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[9,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[8,6] => 00 => [3] => ([],3) => 1
[8,4,2] => 000 => [4] => ([],4) => 1
[8,2,2,2] => 0000 => [5] => ([],5) => 1
[7,7] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[7,5,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[7,5,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[7,3,3,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[7,3,2,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[7,3,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[6,6,2] => 000 => [4] => ([],4) => 1
[6,4,4] => 000 => [4] => ([],4) => 1
[6,4,2,2] => 0000 => [5] => ([],5) => 1
[6,2,2,2,2] => 00000 => [6] => ([],6) => 1
[5,5,4] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[5,5,3,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,5,2,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[5,5,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[5,3,3,3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,3,3,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[5,3,2,2,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
[4,4,4,2] => 0000 => [5] => ([],5) => 1
[4,4,2,2,2] => 00000 => [6] => ([],6) => 1
[3,3,3,3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,3,3,3,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[15] => 1 => [1,1] => ([(0,1)],2) => 2
[14,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[13,2] => 10 => [1,2] => ([(1,2)],3) => 2
[13,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[12,3] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[12,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[11,4] => 10 => [1,2] => ([(1,2)],3) => 2
[11,3,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[11,2,2] => 100 => [1,3] => ([(2,3)],4) => 2
[11,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[10,5] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[10,4,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[10,3,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[10,2,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[9,6] => 10 => [1,2] => ([(1,2)],3) => 2
[9,5,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[9,4,2] => 100 => [1,3] => ([(2,3)],4) => 2
[9,3,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[9,3,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[9,2,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[9,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[8,7] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[8,6,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[8,5,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[8,4,3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[8,4,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[8,3,2,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[8,2,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[7,7,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,6,2] => 100 => [1,3] => ([(2,3)],4) => 2
[7,5,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,5,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7,4,4] => 100 => [1,3] => ([(2,3)],4) => 2
[7,4,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[7,3,3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[7,3,3,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7,3,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[7,2,2,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[6,6,3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[6,6,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[6,5,4] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[6,5,2,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[6,4,4,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[6,4,3,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[6,4,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,3,2,2,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 2
[6,2,2,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[5,5,5] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[5,5,3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,5,3,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,5,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[5,4,4,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[5,4,2,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[5,3,3,3,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,3,3,2,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[5,3,3,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[4,4,4,3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,4,4,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,4,3,2,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[4,4,2,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[4,2,2,2,2,2,1] => 0000001 => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[3,3,3,3,3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,3,3,3,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[16] => 0 => [2] => ([],2) => 1
[15,1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[14,2] => 00 => [3] => ([],3) => 1
[13,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[13,1,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[12,4] => 00 => [3] => ([],3) => 1
[12,2,2] => 000 => [4] => ([],4) => 1
[11,5] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[11,3,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[11,3,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[11,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[10,6] => 00 => [3] => ([],3) => 1
[10,4,2] => 000 => [4] => ([],4) => 1
[10,2,2,2] => 0000 => [5] => ([],5) => 1
[9,7] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[9,5,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[9,5,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[9,3,3,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[9,3,2,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[9,3,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[8,8] => 00 => [3] => ([],3) => 1
[8,6,2] => 000 => [4] => ([],4) => 1
[8,4,4] => 000 => [4] => ([],4) => 1
[8,4,2,2] => 0000 => [5] => ([],5) => 1
[8,2,2,2,2] => 00000 => [6] => ([],6) => 1
[7,7,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[7,7,1,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[7,5,4] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[7,5,3,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[7,5,2,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[7,5,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[7,3,3,3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[7,3,3,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[7,3,2,2,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
[6,6,4] => 000 => [4] => ([],4) => 1
[6,6,2,2] => 0000 => [5] => ([],5) => 1
[6,4,4,2] => 0000 => [5] => ([],5) => 1
[6,4,2,2,2] => 00000 => [6] => ([],6) => 1
[5,5,5,1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,5,4,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[5,5,3,3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[5,5,3,1,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[5,5,2,2,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
[5,3,3,3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,3,3,1,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[4,4,4,4] => 0000 => [5] => ([],5) => 1
[4,4,4,2,2] => 00000 => [6] => ([],6) => 1
[3,3,3,3,3,1] => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[17] => 1 => [1,1] => ([(0,1)],2) => 2
[16,1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[15,2] => 10 => [1,2] => ([(1,2)],3) => 2
[15,1,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[14,3] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[14,2,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[13,4] => 10 => [1,2] => ([(1,2)],3) => 2
[13,3,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[13,2,2] => 100 => [1,3] => ([(2,3)],4) => 2
[13,1,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[12,5] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[12,4,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[12,3,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[12,2,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[11,6] => 10 => [1,2] => ([(1,2)],3) => 2
[11,5,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[11,4,2] => 100 => [1,3] => ([(2,3)],4) => 2
[11,3,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[11,3,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[11,2,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[11,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[10,7] => 01 => [2,1] => ([(0,2),(1,2)],3) => 2
[10,6,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[10,5,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[10,4,3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[10,4,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[10,3,2,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[10,2,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[9,8] => 10 => [1,2] => ([(1,2)],3) => 2
[9,7,1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[9,6,2] => 100 => [1,3] => ([(2,3)],4) => 2
[9,5,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[9,5,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[9,4,4] => 100 => [1,3] => ([(2,3)],4) => 2
[9,4,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[9,3,3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[9,3,3,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[9,3,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[9,2,2,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[8,8,1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[8,7,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[8,6,3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[8,6,2,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[8,5,4] => 010 => [2,2] => ([(1,3),(2,3)],4) => 2
[8,5,2,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[8,4,4,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[8,4,3,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[8,4,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[8,3,2,2,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 2
[8,2,2,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[7,7,3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,7,1,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7,6,4] => 100 => [1,3] => ([(2,3)],4) => 2
[7,6,2,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[7,5,5] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[7,5,3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[7,5,3,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7,5,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[7,4,4,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[7,4,2,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[7,3,3,3,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[7,3,3,2,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[7,3,3,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[6,6,5] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[6,6,4,1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[6,6,3,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[6,6,2,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,5,4,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 2
[6,5,2,2,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 2
[6,4,4,3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[6,4,4,2,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[6,4,3,2,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[6,4,2,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[6,2,2,2,2,2,1] => 0000001 => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[5,5,5,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,5,5,1,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,5,3,3,1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,5,3,2,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[5,5,3,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[5,4,4,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[5,4,4,2,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[5,3,3,3,3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,3,3,3,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[4,4,4,4,1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,4,4,3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[4,4,4,2,2,1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[4,4,2,2,2,2,1] => 0000001 => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[3,3,3,3,3,2] => 111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[3,3,3,3,3,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
odd parts
Description
Return the binary word indicating which parts of the partition are odd.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.