*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001312

-----------------------------------------------------------------------------
Collection: Integer compositions

-----------------------------------------------------------------------------
Description: Number of parabolic noncrossing partitions indexed by the composition.

Also the number of elements in the $\nu$-Tamari lattice with $\nu = \nu_\alpha = 1^{\alpha_1} 0^{\alpha_1} \cdots 1^{\alpha_k} 0^{\alpha_k}$, the bounce path indexed by the composition $\alpha$. These elements are Dyck paths weakly above the bounce path $\nu_\alpha$.

-----------------------------------------------------------------------------
References: [1]   Mühle, H., Williams, N. Tamari Lattices for Parabolic Quotients of the Symmetric Group [[arXiv:1804.02761]]
[2]   Bergeron, N., Ceballos, C., Pilaud, V. Hopf dreams [[arXiv:1807.03044]]

-----------------------------------------------------------------------------
Code:
def contains(A,B):
    Aa = A.to_area_sequence()
    Bb = B.to_area_sequence()
    return all( Aa[i] >= Bb[i] for i in range(len(Aa)) )

def statistic(L):
    n = sum(list(L))
    Bp = []
    for a in L:
        Bp += ([1] * a) + ([0] * a)
    Bp = DyckWord(Bp)
    return sum(1 for D in DyckWords(n) if contains(D, Bp))


-----------------------------------------------------------------------------
Statistic values:

[1]                 => 1
[1,1]               => 2
[2]                 => 1
[1,1,1]             => 5
[1,2]               => 3
[2,1]               => 3
[3]                 => 1
[1,1,1,1]           => 14
[1,1,2]             => 9
[1,2,1]             => 10
[1,3]               => 4
[2,1,1]             => 9
[2,2]               => 6
[3,1]               => 4
[4]                 => 1
[1,1,1,1,1]         => 42
[1,1,1,2]           => 28
[1,1,2,1]           => 32
[1,1,3]             => 14
[1,2,1,1]           => 32
[1,2,2]             => 22
[1,3,1]             => 17
[1,4]               => 5
[2,1,1,1]           => 28
[2,1,2]             => 19
[2,2,1]             => 22
[2,3]               => 10
[3,1,1]             => 14
[3,2]               => 10
[4,1]               => 5
[5]                 => 1
[1,1,1,1,1,1]       => 132
[1,1,1,1,2]         => 90
[1,1,1,2,1]         => 104
[1,1,1,3]           => 48
[1,1,2,1,1]         => 107
[1,1,2,2]           => 75
[1,1,3,1]           => 62
[1,1,4]             => 20
[1,2,1,1,1]         => 104
[1,2,1,2]           => 72
[1,2,2,1]           => 84
[1,2,3]             => 40
[1,3,1,1]           => 62
[1,3,2]             => 45
[1,4,1]             => 26
[1,5]               => 6
[2,1,1,1,1]         => 90
[2,1,1,2]           => 62
[2,1,2,1]           => 72
[2,1,3]             => 34
[2,2,1,1]           => 75
[2,2,2]             => 53
[2,3,1]             => 45
[2,4]               => 15
[3,1,1,1]           => 48
[3,1,2]             => 34
[3,2,1]             => 40
[3,3]               => 20
[4,1,1]             => 20
[4,2]               => 15
[5,1]               => 6
[6]                 => 1
[1,1,1,1,1,1,1]     => 429
[1,1,1,1,1,2]       => 297
[1,1,1,1,2,1]       => 345
[1,1,1,1,3]         => 165
[1,1,1,2,1,1]       => 359
[1,1,1,2,2]         => 255
[1,1,1,3,1]         => 219
[1,1,1,4]           => 75
[1,1,2,1,1,1]       => 359
[1,1,2,1,2]         => 252
[1,1,2,2,1]         => 295
[1,1,2,3]           => 145
[1,1,3,1,1]         => 233
[1,1,3,2]           => 171
[1,1,4,1]           => 107
[1,1,5]             => 27
[1,2,1,1,1,1]       => 345
[1,2,1,1,2]         => 241
[1,2,1,2,1]         => 281
[1,2,1,3]           => 137
[1,2,2,1,1]         => 295
[1,2,2,2]           => 211
[1,2,3,1]           => 185
[1,2,4]             => 65
[1,3,1,1,1]         => 219
[1,3,1,2]           => 157
[1,3,2,1]           => 185
[1,3,3]             => 95
[1,4,1,1]           => 107
[1,4,2]             => 81
[1,5,1]             => 37
[1,6]               => 7
[2,1,1,1,1,1]       => 297
[2,1,1,1,2]         => 207
[2,1,1,2,1]         => 241
[2,1,1,3]           => 117
[2,1,2,1,1]         => 252
[2,1,2,2]           => 180
[2,1,3,1]           => 157
[2,1,4]             => 55
[2,2,1,1,1]         => 255
[2,2,1,2]           => 180
[2,2,2,1]           => 211
[2,2,3]             => 105
[2,3,1,1]           => 171
[2,3,2]             => 126
[2,4,1]             => 81
[2,5]               => 21
[3,1,1,1,1]         => 165
[3,1,1,2]           => 117
[3,1,2,1]           => 137
[3,1,3]             => 69
[3,2,1,1]           => 145
[3,2,2]             => 105
[3,3,1]             => 95
[3,4]               => 35
[4,1,1,1]           => 75
[4,1,2]             => 55
[4,2,1]             => 65
[4,3]               => 35
[5,1,1]             => 27
[5,2]               => 21
[6,1]               => 7
[7]                 => 1
[1,1,1,1,1,1,1,1]   => 1430
[1,1,1,1,1,1,2]     => 1001
[1,1,1,1,1,2,1]     => 1166
[1,1,1,1,1,3]       => 572
[1,1,1,1,2,1,1]     => 1220
[1,1,1,1,2,2]       => 875
[1,1,1,1,3,1]       => 770
[1,1,1,1,4]         => 275
[1,1,1,2,1,1,1]     => 1234
[1,1,1,2,1,2]       => 875
[1,1,1,2,2,1]       => 1026
[1,1,1,2,3]         => 516
[1,1,1,3,1,1]       => 842
[1,1,1,3,2]         => 623
[1,1,1,4,1]         => 410
[1,1,1,5]           => 110
[1,1,2,1,1,1,1]     => 1220
[1,1,2,1,1,2]       => 861
[1,1,2,1,2,1]       => 1006
[1,1,2,1,3]         => 502
[1,1,2,2,1,1]       => 1060
[1,1,2,2,2]         => 765
[1,1,2,3,1]         => 685
[1,1,2,4]           => 250
[1,1,3,1,1,1]       => 842
[1,1,3,1,2]         => 609
[1,1,3,2,1]         => 718
[1,1,3,3]           => 376
[1,1,4,1,1]         => 450
[1,1,4,2]           => 343
[1,1,5,1]           => 170
[1,1,6]             => 35
[1,2,1,1,1,1,1]     => 1166
[1,2,1,1,1,2]       => 821
[1,2,1,1,2,1]       => 958
[1,2,1,1,3]         => 476
[1,2,1,2,1,1]       => 1006
[1,2,1,2,2]         => 725
[1,2,1,3,1]         => 646
[1,2,1,4]           => 235
[1,2,2,1,1,1]       => 1026
[1,2,2,1,2]         => 731
[1,2,2,2,1]         => 858
[1,2,2,3]           => 436
[1,2,3,1,1]         => 718
[1,2,3,2]           => 533
[1,2,4,1]           => 358
[1,2,5]             => 98
[1,3,1,1,1,1]       => 770
[1,3,1,1,2]         => 551
[1,3,1,2,1]         => 646
[1,3,1,3]           => 332
[1,3,2,1,1]         => 685
[1,3,2,2]           => 500
[1,3,3,1]           => 460
[1,3,4]             => 175
[1,4,1,1,1]         => 410
[1,4,1,2]           => 303
[1,4,2,1]           => 358
[1,4,3]             => 196
[1,5,1,1]           => 170
[1,5,2]             => 133
[1,6,1]             => 50
[1,7]               => 8
[2,1,1,1,1,1,1]     => 1001
[2,1,1,1,1,2]       => 704
[2,1,1,1,2,1]       => 821
[2,1,1,1,3]         => 407
[2,1,1,2,1,1]       => 861
[2,1,1,2,2]         => 620
[2,1,1,3,1]         => 551
[2,1,1,4]           => 200
[2,1,2,1,1,1]       => 875
[2,1,2,1,2]         => 623
[2,1,2,2,1]         => 731
[2,1,2,3]           => 371
[2,1,3,1,1]         => 609
[2,1,3,2]           => 452
[2,1,4,1]           => 303
[2,1,5]             => 83
[2,2,1,1,1,1]       => 875
[2,2,1,1,2]         => 620
[2,2,1,2,1]         => 725
[2,2,1,3]           => 365
[2,2,2,1,1]         => 765
[2,2,2,2]           => 554
[2,2,3,1]           => 500
[2,2,4]             => 185
[2,3,1,1,1]         => 623
[2,3,1,2]           => 452
[2,3,2,1]           => 533
[2,3,3]             => 281
[2,4,1,1]           => 343
[2,4,2]             => 262
[2,5,1]             => 133
[2,6]               => 28
[3,1,1,1,1,1]       => 572
[3,1,1,1,2]         => 407
[3,1,1,2,1]         => 476
[3,1,1,3]           => 242
[3,1,2,1,1]         => 502
[3,1,2,2]           => 365
[3,1,3,1]           => 332
[3,1,4]             => 125
[3,2,1,1,1]         => 516
[3,2,1,2]           => 371
[3,2,2,1]           => 436
[3,2,3]             => 226
[3,3,1,1]           => 376
[3,3,2]             => 281
[3,4,1]             => 196
[3,5]               => 56
[4,1,1,1,1]         => 275
[4,1,1,2]           => 200
[4,1,2,1]           => 235
[4,1,3]             => 125
[4,2,1,1]           => 250
[4,2,2]             => 185
[4,3,1]             => 175
[4,4]               => 70
[5,1,1,1]           => 110
[5,1,2]             => 83
[5,2,1]             => 98
[5,3]               => 56
[6,1,1]             => 35
[6,2]               => 28
[7,1]               => 8
[8]                 => 1
[1,1,1,1,1,1,1,1,1] => 4862
[1,1,1,1,1,1,1,2]   => 3432
[1,1,1,1,1,1,2,1]   => 4004
[1,1,1,1,1,1,3]     => 2002
[1,1,1,1,1,2,1,1]   => 4202
[1,1,1,1,1,2,2]     => 3036
[1,1,1,1,1,3,1]     => 2717
[1,1,1,1,1,4]       => 1001
[1,1,1,1,2,1,1,1]   => 4274
[1,1,1,1,2,1,2]     => 3054
[1,1,1,1,2,2,1]     => 3584
[1,1,1,1,2,3]       => 1834
[1,1,1,1,3,1,1]     => 3014
[1,1,1,1,3,2]       => 2244
[1,1,1,1,4,1]       => 1529
[1,1,1,1,5]         => 429
[1,1,1,2,1,1,1,1]   => 4274
[1,1,1,2,1,1,2]     => 3040
[1,1,1,2,1,2,1]     => 3556
[1,1,1,2,1,3]       => 1806
[1,1,1,2,2,1,1]     => 3754
[1,1,1,2,2,2]       => 2728
[1,1,1,2,3,1]       => 2479
[1,1,1,2,4]         => 931
[1,1,1,3,1,1,1]     => 3098
[1,1,1,3,1,2]       => 2256
[1,1,1,3,2,1]       => 2660
[1,1,1,3,3]         => 1414
[1,1,1,4,1,1]       => 1754
[1,1,1,4,2]         => 1344
[1,1,1,5,1]         => 704
[1,1,1,6]           => 154
[1,1,2,1,1,1,1,1]   => 4202
[1,1,2,1,1,1,2]     => 2982
[1,1,2,1,1,2,1]     => 3484
[1,1,2,1,1,3]       => 1762
[1,1,2,1,2,1,1]     => 3667
[1,1,2,1,2,2]       => 2661
[1,1,2,1,3,1]       => 2407
[1,1,2,1,4]         => 901
[1,1,2,2,1,1,1]     => 3754
[1,1,2,2,1,2]       => 2694
[1,1,2,2,2,1]       => 3164
[1,1,2,2,3]         => 1634
[1,1,2,3,1,1]       => 2704
[1,1,2,3,2]         => 2019
[1,1,2,4,1]         => 1399
[1,1,2,5]           => 399
[1,1,3,1,1,1,1]     => 3014
[1,1,3,1,1,2]       => 2172
[1,1,3,1,2,1]       => 2548
[1,1,3,1,3]         => 1330
[1,1,3,2,1,1]       => 2704
[1,1,3,2,2]         => 1986
[1,1,3,3,1]         => 1849
[1,1,3,4]           => 721
[1,1,4,1,1,1]       => 1754
[1,1,4,1,2]         => 1304
[1,1,4,2,1]         => 1540
[1,1,4,3]           => 854
[1,1,5,1,1]         => 794
[1,1,5,2]           => 624
[1,1,6,1]           => 254
[1,1,7]             => 44
[1,2,1,1,1,1,1,1]   => 4004
[1,2,1,1,1,1,2]     => 2838
[1,2,1,1,1,2,1]     => 3314
[1,2,1,1,1,3]       => 1672
[1,2,1,1,2,1,1]     => 3484
[1,2,1,1,2,2]       => 2526
[1,2,1,1,3,1]       => 2279
[1,2,1,1,4]         => 851
[1,2,1,2,1,1,1]     => 3556
[1,2,1,2,1,2]       => 2550
[1,2,1,2,2,1]       => 2994
[1,2,1,2,3]         => 1544
[1,2,1,3,1,1]       => 2548
[1,2,1,3,2]         => 1902
[1,2,1,4,1]         => 1315
[1,2,1,5]           => 375
[1,2,2,1,1,1,1]     => 3584
[1,2,2,1,1,2]       => 2558
[1,2,2,1,2,1]       => 2994
[1,2,2,1,3]         => 1532
[1,2,2,2,1,1]       => 3164
[1,2,2,2,2]         => 2306
[1,2,2,3,1]         => 2109
[1,2,2,4]           => 801
[1,2,3,1,1,1]       => 2660
[1,2,3,1,2]         => 1942
[1,2,3,2,1]         => 2290
[1,2,3,3]           => 1224
[1,2,4,1,1]         => 1540
[1,2,4,2]           => 1182
[1,2,5,1]           => 630
[1,2,6]             => 140
[1,3,1,1,1,1,1]     => 2717
[1,3,1,1,1,2]       => 1947
[1,3,1,1,2,1]       => 2279
[1,3,1,1,3]         => 1177
[1,3,1,2,1,1]       => 2407
[1,3,1,2,2]         => 1761
[1,3,1,3,1]         => 1622
[1,3,1,4]           => 626
[1,3,2,1,1,1]       => 2479
[1,3,2,1,2]         => 1794
[1,3,2,2,1]         => 2109
[1,3,2,3]           => 1109
[1,3,3,1,1]         => 1849
[1,3,3,2]           => 1389
[1,3,4,1]           => 994
[1,3,5]             => 294
[1,4,1,1,1,1]       => 1529
[1,4,1,1,2]         => 1119
[1,4,1,2,1]         => 1315
[1,4,1,3]           => 709
[1,4,2,1,1]         => 1399
[1,4,2,2]           => 1041
[1,4,3,1]           => 994
[1,4,4]             => 406
[1,5,1,1,1]         => 704
[1,5,1,2]           => 534
[1,5,2,1]           => 630
[1,5,3]             => 364
[1,6,1,1]           => 254
[1,6,2]             => 204
[1,7,1]             => 65
[1,8]               => 9
[2,1,1,1,1,1,1,1]   => 3432
[2,1,1,1,1,1,2]     => 2431
[2,1,1,1,1,2,1]     => 2838
[2,1,1,1,1,3]       => 1430
[2,1,1,1,2,1,1]     => 2982
[2,1,1,1,2,2]       => 2161
[2,1,1,1,3,1]       => 1947
[2,1,1,1,4]         => 726
[2,1,1,2,1,1,1]     => 3040
[2,1,1,2,1,2]       => 2179
[2,1,1,2,2,1]       => 2558
[2,1,1,2,3]         => 1318
[2,1,1,3,1,1]       => 2172
[2,1,1,3,2]         => 1621
[2,1,1,4,1]         => 1119
[2,1,1,5]           => 319
[2,1,2,1,1,1,1]     => 3054
[2,1,2,1,1,2]       => 2179
[2,1,2,1,2,1]       => 2550
[2,1,2,1,3]         => 1304
[2,1,2,2,1,1]       => 2694
[2,1,2,2,2]         => 1963
[2,1,2,3,1]         => 1794
[2,1,2,4]           => 681
[2,1,3,1,1,1]       => 2256
[2,1,3,1,2]         => 1647
[2,1,3,2,1]         => 1942
[2,1,3,3]           => 1038
[2,1,4,1,1]         => 1304
[2,1,4,2]           => 1001
[2,1,5,1]           => 534
[2,1,6]             => 119
[2,2,1,1,1,1,1]     => 3036
[2,2,1,1,1,2]       => 2161
[2,2,1,1,2,1]       => 2526
[2,2,1,1,3]         => 1286
[2,2,1,2,1,1]       => 2661
[2,2,1,2,2]         => 1936
[2,2,1,3,1]         => 1761
[2,2,1,4]           => 666
[2,2,2,1,1,1]       => 2728
[2,2,2,1,2]         => 1963
[2,2,2,2,1]         => 2306
[2,2,2,3]           => 1198
[2,2,3,1,1]         => 1986
[2,2,3,2]           => 1486
[2,2,4,1]           => 1041
[2,2,5]             => 301
[2,3,1,1,1,1]       => 2244
[2,3,1,1,2]         => 1621
[2,3,1,2,1]         => 1902
[2,3,1,3]           => 998
[2,3,2,1,1]         => 2019
[2,3,2,2]           => 1486
[2,3,3,1]           => 1389
[2,3,4]             => 546
[2,4,1,1,1]         => 1344
[2,4,1,2]           => 1001
[2,4,2,1]           => 1182
[2,4,3]             => 658
[2,5,1,1]           => 624
[2,5,2]             => 491
[2,6,1]             => 204
[2,7]               => 36
[3,1,1,1,1,1,1]     => 2002
[3,1,1,1,1,2]       => 1430
[3,1,1,1,2,1]       => 1672
[3,1,1,1,3]         => 858
[3,1,1,2,1,1]       => 1762
[3,1,1,2,2]         => 1286
[3,1,1,3,1]         => 1177
[3,1,1,4]           => 451
[3,1,2,1,1,1]       => 1806
[3,1,2,1,2]         => 1304
[3,1,2,2,1]         => 1532
[3,1,2,3]           => 802
[3,1,3,1,1]         => 1330
[3,1,3,2]           => 998
[3,1,4,1]           => 709
[3,1,5]             => 209
[3,2,1,1,1,1]       => 1834
[3,2,1,1,2]         => 1318
[3,2,1,2,1]         => 1544
[3,2,1,3]           => 802
[3,2,2,1,1]         => 1634
[3,2,2,2]           => 1198
[3,2,3,1]           => 1109
[3,2,4]             => 431
[3,3,1,1,1]         => 1414
[3,3,1,2]           => 1038
[3,3,2,1]           => 1224
[3,3,3]             => 662
[3,4,1,1]           => 854
[3,4,2]             => 658
[3,5,1]             => 364
[3,6]               => 84
[4,1,1,1,1,1]       => 1001
[4,1,1,1,2]         => 726
[4,1,1,2,1]         => 851
[4,1,1,3]           => 451
[4,1,2,1,1]         => 901
[4,1,2,2]           => 666
[4,1,3,1]           => 626
[4,1,4]             => 251
[4,2,1,1,1]         => 931
[4,2,1,2]           => 681
[4,2,2,1]           => 801
[4,2,3]             => 431
[4,3,1,1]           => 721
[4,3,2]             => 546
[4,4,1]             => 406
[4,5]               => 126
[5,1,1,1,1]         => 429
[5,1,1,2]           => 319
[5,1,2,1]           => 375
[5,1,3]             => 209
[5,2,1,1]           => 399
[5,2,2]             => 301
[5,3,1]             => 294
[5,4]               => 126
[6,1,1,1]           => 154
[6,1,2]             => 119
[6,2,1]             => 140
[6,3]               => 84
[7,1,1]             => 44
[7,2]               => 36
[8,1]               => 9
[9]                 => 1

-----------------------------------------------------------------------------
Created: Dec 12, 2018 at 11:36 by Wenjie Fang

-----------------------------------------------------------------------------
Last Updated: Dec 13, 2018 at 19:02 by Martin Rubey