Identifier
-
Mp00152:
Graphs
—Laplacian multiplicities⟶
Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St001235: Integer compositions ⟶ ℤ
Values
([],1) => [1] => [1] => 1
([],2) => [2] => [1,1] => 2
([(0,1)],2) => [1,1] => [2] => 1
([],3) => [3] => [1,1,1] => 3
([(1,2)],3) => [1,2] => [2,1] => 2
([(0,2),(1,2)],3) => [1,1,1] => [3] => 1
([(0,1),(0,2),(1,2)],3) => [2,1] => [1,2] => 2
([],4) => [4] => [1,1,1,1] => 4
([(2,3)],4) => [1,3] => [2,1,1] => 3
([(1,3),(2,3)],4) => [1,1,2] => [3,1] => 2
([(0,3),(1,3),(2,3)],4) => [1,2,1] => [2,2] => 2
([(0,3),(1,2)],4) => [2,2] => [1,2,1] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1,1] => [4] => 1
([(1,2),(1,3),(2,3)],4) => [2,2] => [1,2,1] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [4] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [1,2,1] => [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,3] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,2] => 3
([],5) => [5] => [1,1,1,1,1] => 5
([(3,4)],5) => [1,4] => [2,1,1,1] => 4
([(2,4),(3,4)],5) => [1,1,3] => [3,1,1] => 3
([(1,4),(2,4),(3,4)],5) => [1,2,2] => [2,2,1] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,3,1] => [2,1,2] => 3
([(1,4),(2,3)],5) => [2,3] => [1,2,1,1] => 3
([(1,4),(2,3),(3,4)],5) => [1,1,1,2] => [4,1] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1,2] => [4,1] => 2
([(2,3),(2,4),(3,4)],5) => [2,3] => [1,2,1,1] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,2] => [4,1] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,2,1] => [3,2] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [1,2,2] => [2,2,1] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,2] => [1,3,1] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,2,1] => [3,2] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,2,2] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [2,1,2] => [1,3,1] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [1,2,1,1] => [2,3] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [1,2,2] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,2,1] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,2,1,1] => [2,3] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,4] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,1,1,1] => [5] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,2,2] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,2] => 4
([],6) => [6] => [1,1,1,1,1,1] => 6
([(4,5)],6) => [1,5] => [2,1,1,1,1] => 5
([(3,5),(4,5)],6) => [1,1,4] => [3,1,1,1] => 4
([(2,5),(3,5),(4,5)],6) => [1,2,3] => [2,2,1,1] => 3
([(1,5),(2,5),(3,5),(4,5)],6) => [1,3,2] => [2,1,2,1] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,4,1] => [2,1,1,2] => 4
([(2,5),(3,4)],6) => [2,4] => [1,2,1,1,1] => 4
([(2,5),(3,4),(4,5)],6) => [1,1,1,3] => [4,1,1] => 3
([(1,2),(3,5),(4,5)],6) => [1,1,1,3] => [4,1,1] => 3
([(3,4),(3,5),(4,5)],6) => [2,4] => [1,2,1,1,1] => 4
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,2,2] => [3,2,1] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,3] => [4,1,1] => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,2,1,1] => [3,3] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,2,2] => [3,2,1] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,3,1] => [3,1,2] => 3
([(2,4),(2,5),(3,4),(3,5)],6) => [1,2,3] => [2,2,1,1] => 3
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2] => [1,2,2,1] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,3] => [1,3,1,1] => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,2,1,1] => [3,3] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,2,1] => [4,2] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,2] => [3,2,1] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,1,1] => [3,3] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,3,1] => [3,1,2] => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,3,1] => [1,2,1,2] => 3
([(0,5),(1,4),(2,3)],6) => [3,3] => [1,1,2,1,1] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [1,2,1,2] => [2,3,1] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [2,1,3] => [1,3,1,1] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,2,1,2] => [2,3,1] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,2,2,1] => [2,2,2] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => [1,2,2,1] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
Map
complement
Description
The complement of a composition.
The complement of a composition I is defined as follows:
If I is the empty composition, then the complement is also the empty composition. Otherwise, let S be the descent set corresponding to I=(i1,…,ik), that is, the subset
{i1,i1+i2,…,i1+i2+⋯+ik−1}
of {1,2,…,|I|−1}. Then, the complement of I is the composition of the same size as I, whose descent set is {1,2,…,|I|−1}∖S.
The complement of a composition I coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to I.
The complement of a composition I is defined as follows:
If I is the empty composition, then the complement is also the empty composition. Otherwise, let S be the descent set corresponding to I=(i1,…,ik), that is, the subset
{i1,i1+i2,…,i1+i2+⋯+ik−1}
of {1,2,…,|I|−1}. Then, the complement of I is the composition of the same size as I, whose descent set is {1,2,…,|I|−1}∖S.
The complement of a composition I coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to I.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!