Identifier
            
            - 
Mp00276:
    Graphs
    
—to edge-partition of biconnected components⟶
Integer partitions
		
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001233: Dyck paths ⟶ ℤ 
                Values
            
            ([(0,1)],2) => [1] => [1,0] => 0
([(1,2)],3) => [1] => [1,0] => 0
([(0,2),(1,2)],3) => [1,1] => [1,1,0,0] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => 0
([(2,3)],4) => [1] => [1,0] => 0
([(1,3),(2,3)],4) => [1,1] => [1,1,0,0] => 1
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => 1
([(0,3),(1,2)],4) => [1,1] => [1,1,0,0] => 1
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => 1
([(1,2),(1,3),(2,3)],4) => [3] => [1,0,1,0,1,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,0,1,0,1,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,0,1,0,1,0,1,0,1,0] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(3,4)],5) => [1] => [1,0] => 0
([(2,4),(3,4)],5) => [1,1] => [1,1,0,0] => 1
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(1,4),(2,3)],5) => [1,1] => [1,1,0,0] => 1
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => 1
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => 1
([(2,3),(2,4),(3,4)],5) => [3] => [1,0,1,0,1,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,0,1,0,1,0,1,0] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(4,5)],6) => [1] => [1,0] => 0
([(3,5),(4,5)],6) => [1,1] => [1,1,0,0] => 1
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 1
([(2,5),(3,4)],6) => [1,1] => [1,1,0,0] => 1
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => 1
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => 1
([(3,4),(3,5),(4,5)],6) => [3] => [1,0,1,0,1,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,0,1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1,0,1,0,0] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => 1
([(5,6)],7) => [1] => [1,0] => 0
([(4,6),(5,6)],7) => [1,1] => [1,1,0,0] => 1
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => 1
>>> Load all 212 entries. <<<
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                Description
            The number of indecomposable 2-dimensional modules with projective dimension one.
	Map
            to edge-partition of biconnected components
	    
	Description
            Sends a graph to the partition recording the number of edges in its biconnected components. 
The biconnected components are also known as blocks of a graph.
	The biconnected components are also known as blocks of a graph.
Map
            parallelogram polyomino
	    
	Description
            Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
	The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!