Identifier
Values
[1] => [1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => 2
[2] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => 1
[1,1] => [1,0,1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => 3
[3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[2,1] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 2
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 4
[4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 3
[3,1] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 1
[2,2] => [1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 3
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 5
[4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 2
[3,2] => [1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 1
[3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => 2
[2,1,1,1] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 4
[4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 2
[4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 1
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 3
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 3
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 3
[4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => 2
[4,2,1] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 1
[4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 4
[3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
[3,2,2] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 2
[3,2,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 3
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 3
[4,3,1] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 1
[4,2,2] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 2
[4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 3
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 1
[3,3,1,1] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 3
[3,2,2,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
[4,3,2] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 1
[4,3,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 3
[4,2,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 2
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 2
[] => [] => [] => [1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable 2-dimensional modules with projective dimension one.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.