Processing math: 100%

Identifier
Values
[1] => [1,0,1,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,1] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
[2,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => 2
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 1
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 3
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 5
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => 3
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 4
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[2,2,1,1,1] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[4,4] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 7
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => 5
[2,2,2,2] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 5
[2,2,2,1,1] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[2,2,1,1,1,1] => [1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
[3,3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 7
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[3,3,1,1,1] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 5
[2,2,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[2,2,2,1,1,1] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[5,5] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 9
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[3,3,2,2] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[3,3,1,1,1,1] => [1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => 5
[2,2,2,2,2] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 6
[2,2,2,2,1,1] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[4,4,3] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 8
[3,3,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 6
[3,3,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 5
[2,2,2,2,2,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[4,4,4] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 10
[4,4,1,1,1,1] => [1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0,1,0] => 7
[3,3,3,3] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0,1,0] => 9
[3,3,3,2,1] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[3,3,3,1,1,1] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0,1,0] => 7
[3,3,2,2,2] => [1,1,0,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[3,3,2,2,1,1] => [1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[4,4,3,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 7
[3,3,3,2,2] => [1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[5,5,4] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,1,0,0] => 11
[4,4,3,3] => [1,1,1,0,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0,1,0] => 7
[4,4,3,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[4,4,2,2,2] => [1,1,0,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => 8
[3,3,3,3,2] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,1,0,0] => 7
[3,3,3,3,1,1] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,1,0,0] => 6
[3,3,3,2,2,1] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,1,0,0] => 5
[5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 5
[4,4,4,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => 10
[4,4,4,1,1,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => 8
[3,3,3,3,2,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[4,4,4,2,2] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => 7
[5,5,4,3] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => 11
[4,4,4,3,2] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,1,0,0,0] => 8
[4,4,4,3,1,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,1,0,0,0] => 7
[6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 6
[5,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 5
[4,4,4,3,2,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
[5,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,1,0,0,0,0] => 9
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
swap returns and last descent
Description
Return a Dyck path with number of returns and length of the last descent interchanged.
This is the specialisation of the map Φ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
peaks-to-valleys
Description
Return the path that has a valley wherever the original path has a peak of height at least one.
More precisely, the height of a valley in the image is the height of the corresponding peak minus 2.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.