Processing math: 100%

Identifier
Values
[1] => [1,0] => [1,0] => [1,0] => 0
[2] => [1,0,1,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,1] => [1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 0
[3] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 2
[1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[4] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => 3
[2,2] => [1,1,1,0,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
[1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 4
[2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
[3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 2
[2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
[3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[1,1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
[4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 3
[3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[2,2,1,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[4,4,1] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[3,3,1,1,1] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 2
[5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 4
[4,4,1,1] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 3
[5,5,1] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 4
[6,6] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => 5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength 0 is sent to itself.
Let D be a Dyck path of semilength n>0 and decompose it into 1D10D2 with Dyck paths D1,D2 of respective semilengths n1 and n2 such that n1 is minimal. One then has n1+n2=n1.
Now let ˜D1 and ˜D2 be the recursively defined respective images of D1 and D2 under this map. The image of D is then defined as 1˜D20˜D1.