Identifier
Values
[(1,2)] => [1,0] => [1,1,0,0] => [1,0,1,0] => 1
[(1,2),(3,4)] => [1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 1
[(1,2),(3,4),(5,6)] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[(1,2),(3,5),(4,6)] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
[(1,2),(3,6),(4,5)] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
[(1,2),(3,4),(5,6),(7,8)] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[(1,7),(2,3),(4,5),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,8),(2,3),(4,5),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,7),(4,5),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,8),(4,5),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,5),(4,7),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,5),(2,3),(4,7),(6,8)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,2),(3,4),(5,7),(6,8)] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,4),(5,8),(6,7)] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 4
[(1,5),(2,3),(4,8),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,5),(4,8),(6,7)] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[(1,2),(3,4),(5,6),(7,8),(9,10)] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[(1,9),(2,3),(4,5),(6,7),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,10),(2,3),(4,5),(6,7),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,5),(4,6),(7,8),(9,10)] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 5
[(1,2),(3,6),(4,5),(7,8),(9,10)] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 5
[(1,2),(3,7),(4,5),(6,8),(9,10)] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 6
[(1,2),(3,8),(4,5),(6,7),(9,10)] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 6
[(1,3),(2,9),(4,5),(6,7),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,9),(4,5),(6,7),(8,10)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,2),(3,10),(4,5),(6,7),(8,9)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,10),(4,5),(6,7),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,5),(4,7),(6,8),(9,10)] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 6
[(1,2),(3,4),(5,7),(6,8),(9,10)] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 5
[(1,2),(3,4),(5,8),(6,7),(9,10)] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 5
[(1,2),(3,5),(4,8),(6,7),(9,10)] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 6
[(1,2),(3,5),(4,9),(6,7),(8,10)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,5),(4,9),(6,7),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,5),(2,3),(4,9),(6,7),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,5),(2,3),(4,10),(6,7),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,3),(2,5),(4,10),(6,7),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,5),(4,10),(6,7),(8,9)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,5),(4,10),(6,8),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,5),(2,3),(4,10),(6,8),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,5),(2,3),(4,9),(6,8),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,5),(4,9),(6,8),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,5),(4,8),(6,9),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,5),(2,3),(4,8),(6,9),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,5),(2,3),(4,7),(6,9),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,3),(2,5),(4,7),(6,9),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,5),(4,7),(6,9),(8,10)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,10),(4,5),(6,8),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,9),(4,5),(6,8),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,8),(4,5),(6,9),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,2),(3,7),(4,5),(6,9),(8,10)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,7),(4,5),(6,9),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,10),(2,3),(4,5),(6,8),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,9),(2,3),(4,5),(6,8),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,8),(2,3),(4,5),(6,9),(7,10)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,7),(2,3),(4,5),(6,9),(8,10)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,4),(5,6),(7,9),(8,10)] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 5
[(1,2),(3,4),(5,6),(7,10),(8,9)] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 5
[(1,7),(2,3),(4,5),(6,10),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,8),(2,3),(4,5),(6,10),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,9),(2,3),(4,5),(6,10),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,10),(2,3),(4,5),(6,9),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,7),(4,5),(6,10),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,7),(4,5),(6,10),(8,9)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,8),(4,5),(6,10),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,9),(4,5),(6,10),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,10),(4,5),(6,9),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,2),(3,5),(4,7),(6,10),(8,9)] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[(1,3),(2,5),(4,7),(6,10),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,5),(2,3),(4,7),(6,10),(8,9)] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[(1,5),(2,3),(4,8),(6,10),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,5),(4,8),(6,10),(7,9)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,5),(4,9),(6,10),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,5),(2,3),(4,9),(6,10),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,5),(2,3),(4,10),(6,9),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,5),(4,10),(6,9),(7,8)] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,1,0,0,0] => 7
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => 8
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 4
[(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => 5
[(1,10),(2,3),(4,5),(6,7),(8,9),(11,12)] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,1,0,0] => 6
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,1,0,0,0] => 7
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 6
[(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[(1,8),(2,3),(4,5),(6,7),(9,10),(11,12)] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,1,0,0] => 5
[(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0,1,0] => 7
[(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 3
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 6
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => 7
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => 5
[(1,11),(2,3),(4,5),(6,7),(8,9),(10,12)] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 4
[(1,12),(2,3),(4,5),(6,7),(8,10),(9,11)] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 6
[(1,11),(2,3),(4,5),(6,7),(8,10),(9,12)] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 6
[(1,10),(2,3),(4,5),(6,7),(8,11),(9,12)] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 6
[(1,12),(2,4),(3,6),(5,8),(7,10),(9,11)] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,11),(2,4),(3,6),(5,8),(7,10),(9,12)] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,10),(2,4),(3,6),(5,8),(7,11),(9,12)] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[(1,3),(2,12),(4,5),(6,7),(8,9),(10,11)] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 4
[(1,3),(2,12),(4,5),(6,7),(8,10),(9,11)] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 6
[(1,4),(2,12),(3,6),(5,8),(7,10),(9,11)] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
>>> Load all 102 entries. <<<
[(1,4),(2,6),(3,12),(5,8),(7,10),(9,11)] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to Dyck path
Description
The Dyck path corresponding to the opener-closer sequence of the perfect matching.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.