Identifier
-
Mp00043:
Integer partitions
—to Dyck path⟶
Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St001210: Dyck paths ⟶ ℤ
Values
[1] => [1,0,1,0] => [1,1,0,0] => 2
[2] => [1,1,0,0,1,0] => [1,1,1,0,0,0] => 3
[1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
[3] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0] => 4
[2,1] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0] => 2
[4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 5
[3,1] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,0] => 3
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 3
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => 2
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 6
[4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,0] => 3
[3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[2,1,1,1] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
[5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 5
[4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 4
[4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 3
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 4
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 2
[3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[2,1,1,1,1] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => 2
[5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 5
[5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 4
[4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 4
[4,2,1] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => 3
[4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
[3,2,2] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 3
[3,2,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => 2
[3,1,1,1,1] => [1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 2
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => 2
[2,2,1,1,1] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 5
[5,2,1] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 4
[5,1,1,1] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 3
[4,4] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 5
[4,3,1] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => 3
[4,2,2] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 3
[4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => 2
[4,1,1,1,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => 3
[3,3,1,1] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[3,2,2,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[3,2,1,1,1] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => 2
[2,2,2,2] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[2,2,2,1,1] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
[5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 5
[5,3,1] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 4
[5,2,2] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 4
[5,2,1,1] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
[5,1,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 3
[4,4,1] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 4
[4,3,2] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 3
[4,3,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 2
[4,2,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 2
[4,2,1,1,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => 2
[3,3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 2
[3,3,1,1,1] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[3,2,2,2] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 3
[3,2,2,1,1] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 2
[2,2,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 2
[5,4,1] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 4
[5,3,2] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 4
[5,3,1,1] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 3
[5,2,2,1] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[5,2,1,1,1] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 2
[4,4,2] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 4
[4,4,1,1] => [1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 3
[4,3,3] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 4
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[4,3,1,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[4,2,2,2] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[4,2,2,1,1] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 2
[3,3,3,1] => [1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 3
[3,3,2,2] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[3,3,2,1,1] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 2
[3,2,2,2,1] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 2
[5,4,2] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 4
[5,4,1,1] => [1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 3
[5,3,3] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 4
[5,3,2,1] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 3
[5,3,1,1,1] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 2
[5,2,2,2] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 3
[5,2,2,1,1] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 2
[4,4,3] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 4
[4,4,2,1] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 3
[4,4,1,1,1] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[4,3,3,1] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 3
[4,3,2,2] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
[4,3,2,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 2
[4,2,2,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => 2
[3,3,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 3
[3,3,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[3,3,2,2,1] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 2
>>> Load all 131 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Map
promotion
Description
The promotion of the two-row standard Young tableau of a Dyck path.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!