Identifier
-
Mp00254:
Permutations
—Inverse fireworks map⟶
Permutations
St001207: Permutations ⟶ ℤ
Values
=>
[1,2]=>[1,2]=>0
[2,1]=>[2,1]=>1
[1,2,3]=>[1,2,3]=>0
[1,3,2]=>[1,3,2]=>1
[2,1,3]=>[2,1,3]=>1
[2,3,1]=>[1,3,2]=>1
[3,1,2]=>[3,1,2]=>2
[3,2,1]=>[3,2,1]=>2
[1,2,3,4]=>[1,2,3,4]=>0
[1,2,4,3]=>[1,2,4,3]=>1
[1,3,2,4]=>[1,3,2,4]=>1
[1,3,4,2]=>[1,2,4,3]=>1
[1,4,2,3]=>[1,4,2,3]=>2
[1,4,3,2]=>[1,4,3,2]=>2
[2,1,3,4]=>[2,1,3,4]=>1
[2,1,4,3]=>[2,1,4,3]=>1
[2,3,1,4]=>[1,3,2,4]=>1
[2,3,4,1]=>[1,2,4,3]=>1
[2,4,1,3]=>[2,4,1,3]=>2
[2,4,3,1]=>[1,4,3,2]=>2
[3,1,2,4]=>[3,1,2,4]=>2
[3,1,4,2]=>[2,1,4,3]=>1
[3,2,1,4]=>[3,2,1,4]=>2
[3,2,4,1]=>[2,1,4,3]=>1
[3,4,1,2]=>[2,4,1,3]=>2
[3,4,2,1]=>[1,4,3,2]=>2
[4,1,2,3]=>[4,1,2,3]=>3
[4,1,3,2]=>[4,1,3,2]=>3
[4,2,1,3]=>[4,2,1,3]=>3
[4,2,3,1]=>[4,1,3,2]=>3
[4,3,1,2]=>[4,3,1,2]=>3
[4,3,2,1]=>[4,3,2,1]=>3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Map
Inverse fireworks map
Description
Sends a permutation to an inverse fireworks permutation.
A permutation $\sigma$ is inverse fireworks if its inverse avoids the vincular pattern $3-12$. The inverse fireworks map sends any permutation $\sigma$ to an inverse fireworks permutation that is below $\sigma$ in left weak order and has the same Rajchgot index St001759The Rajchgot index of a permutation..
A permutation $\sigma$ is inverse fireworks if its inverse avoids the vincular pattern $3-12$. The inverse fireworks map sends any permutation $\sigma$ to an inverse fireworks permutation that is below $\sigma$ in left weak order and has the same Rajchgot index St001759The Rajchgot index of a permutation..
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!