Identifier
-
Mp00043:
Integer partitions
—to Dyck path⟶
Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St001207: Permutations ⟶ ℤ
Values
[1] => [1,0,1,0] => [3,1,2] => [1,3,2] => 1
[2] => [1,1,0,0,1,0] => [2,4,1,3] => [2,1,4,3] => 1
[1,1] => [1,0,1,1,0,0] => [3,1,4,2] => [3,4,1,2] => 3
[2,1] => [1,0,1,0,1,0] => [4,1,2,3] => [1,2,4,3] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
Foata bijection
Description
Sends a permutation to its image under the Foata bijection.
The Foata bijection $\phi$ is a bijection on the set of words with no two equal letters. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
This bijection sends the major index (St000004The major index of a permutation.) to the number of inversions (St000018The number of inversions of a permutation.).
The Foata bijection $\phi$ is a bijection on the set of words with no two equal letters. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
- If $w_{i+1} \geq v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} \geq v_k$.
- If $w_{i+1} < v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} < v_k$.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
- $1$
- $|1|4 \to 14$
- $|14|2 \to 412$
- $|4|1|2|5 \to 4125$
- $|4|125|3 \to 45123.$
This bijection sends the major index (St000004The major index of a permutation.) to the number of inversions (St000018The number of inversions of a permutation.).
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!